Chào mừng các em học sinh đến với lời giải chi tiết bài tập 5.36 trang 61 SGK Toán 12 tập 2 - Kết nối tri thức. Bài tập này thuộc chương trình học về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp đáp án chính xác và phương pháp giải bài tập hiệu quả nhất.
Trong không gian Oxyz, cho hai điểm \(A\left( { - 1;0; - 1} \right),B\left( {2;1;1} \right)\). Phương trình đường thẳng AB là A. \(\left\{ \begin{array}{l}x = 1 + 3t\\y = t\\z = 1 + 2t\end{array} \right.\). B. \(\left\{ \begin{array}{l}x = - 1 + t\\y = t\\z = - 1 + 2t\end{array} \right.\). C. \(\left\{ \begin{array}{l}x = 2 + t\\y = 1 + t\\z = 1 + 2t\end{array} \right.\). D. \(\left\{ \begin{array}{l}x = - 1 + 3t\\y = t\\z = - 1 + 2t\end{array} \right.\).
Đề bài
Trong không gian Oxyz, cho hai điểm \(A\left( { - 1;0; - 1} \right),B\left( {2;1;1} \right)\). Phương trình đường thẳng AB là
A. \(\left\{ \begin{array}{l}x = 1 + 3t\\y = t\\z = 1 + 2t\end{array} \right.\).
B. \(\left\{ \begin{array}{l}x = - 1 + t\\y = t\\z = - 1 + 2t\end{array} \right.\).
C. \(\left\{ \begin{array}{l}x = 2 + t\\y = 1 + t\\z = 1 + 2t\end{array} \right.\).
D. \(\left\{ \begin{array}{l}x = - 1 + 3t\\y = t\\z = - 1 + 2t\end{array} \right.\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về phương trình tham số của đường thẳng để viết phương trình đường thẳng: Trong không gian Oxyz, cho đường thẳng \(\Delta \) đi qua điểm \(A\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\). Hệ phương trình \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\) được gọi là phương trình tham số của đường thẳng \(\Delta \) (t là tham số, \(t \in \mathbb{R}\))
Lời giải chi tiết
Đường thẳng AB đi qua điểm \(A\left( { - 1;0; - 1} \right)\) và nhận \(\overrightarrow {AB} \left( {3;1;2} \right)\) làm một vectơ chỉ phương. Do đó, phương trình tham số của đường thẳng AB là: \(\left\{ \begin{array}{l}x = - 1 + 3t\\y = t\\z = - 1 + 2t\end{array} \right.\)
Chọn D
Bài tập 5.36 trang 61 SGK Toán 12 tập 2 - Kết nối tri thức yêu cầu chúng ta khảo sát hàm số và tìm các điểm cực trị. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các kiến thức về đạo hàm, điều kiện cực trị và cách xác định khoảng đồng biến, nghịch biến của hàm số.
Cho hàm số y = f(x) = x3 - 3x2 + 2. Hãy:
Bước 1: Tìm tập xác định của hàm số
Hàm số y = x3 - 3x2 + 2 là một hàm đa thức, do đó tập xác định của hàm số là D = ℝ.
Bước 2: Tính đạo hàm cấp nhất
f'(x) = 3x2 - 6x
Bước 3: Tìm các điểm cực trị
Để tìm các điểm cực trị, ta giải phương trình f'(x) = 0:
3x2 - 6x = 0
3x(x - 2) = 0
Suy ra x = 0 hoặc x = 2
Bước 4: Xác định loại điểm cực trị
Ta xét dấu của f'(x) trên các khoảng:
Vậy:
Bước 5: Tìm khoảng đồng biến, nghịch biến
Dựa vào bảng xét dấu của f'(x), ta có:
Hàm số y = x3 - 3x2 + 2 đạt cực đại tại x = 0 với giá trị cực đại là 2 và đạt cực tiểu tại x = 2 với giá trị cực tiểu là -2. Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2).
Hy vọng lời giải chi tiết này sẽ giúp các em hiểu rõ hơn về cách giải bài tập 5.36 trang 61 SGK Toán 12 tập 2 - Kết nối tri thức. Chúc các em học tập tốt!
Các bài tập tương tự:
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập