Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách giáo khoa Toán 12 tập 1 - Kết nối tri thức. Bài viết này sẽ hướng dẫn bạn giải bài tập 1.8 trang 14 một cách dễ hiểu nhất.
Chúng tôi luôn cố gắng mang đến những giải pháp tối ưu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Cho hàm số (y = fleft( x right) = left| x right|). a) Tính các giới hạn (mathop {lim }limits_{x to {0^ + }} frac{{fleft( x right) - fleft( 0 right)}}{{x - 0}}) và (mathop {lim }limits_{x to {0^ - }} frac{{fleft( x right) - fleft( 0 right)}}{{x - 0}}). Từ đó suy ra hàm số không có đạo hàm tại (x = 0). b) Sử dụng định nghĩa, chứng minh hàm số có cực tiểu tại (x = 0). (Xem Hình 1.4)
Đề bài
Cho hàm số \(y = f\left( x \right) = \left| x \right|\).a) Tính các giới hạn \(\mathop {\lim }\limits_{x \to {0^ + }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}\) và \(\mathop {\lim }\limits_{x \to {0^ - }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}\). Từ đó suy ra hàm số không có đạo hàm tại \(x = 0\).b) Sử dụng định nghĩa, chứng minh hàm số có cực tiểu tại \(x = 0\). (Xem Hình 1.4)
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về cực trị hàm số để tìm cực tiểu của hàm số: Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên khoảng (a; b) (a có thể là \( - \infty \), b có thể là \( + \infty \)) và điểm \({x_0} \in \left( {a;b} \right)\). Nếu tồn tại số \(h > 0\) sao cho \(f\left( x \right) > f\left( {{x_0}} \right)\) với mọi \(x \in \left( {{x_0} - h;{x_0} + h} \right) \subset \left( {a;b} \right)\) và \(x \ne {x_0}\) thì ta nói hàm số f(x) đạt cực tiểu tại \({x_0}\).
Lời giải chi tiết
a) \(\mathop {\lim }\limits_{x \to {0^ + }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\left| x \right| - 0}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{x}{x} = 1\)
\(\mathop {\lim }\limits_{x \to {0^ - }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{\left| x \right| - 0}}{{x - 0}} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{ - x}}{x} = - 1\)
Vì \(\mathop {\lim }\limits_{x \to {0^ + }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} \ne \mathop {\lim }\limits_{x \to {0^ - }} \frac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}\) nên hàm số không có đạo hàm tại \(x = 0\).
b) Đồ thị hàm số \(y = f\left( x \right) = \left| x \right|\):

Ta có: \(y = f\left( x \right) = \left| x \right| = \left\{ \begin{array}{l} - x\;khi\;x \in \left( { - \infty ;0} \right)\\x\;\;\;khi\;x \in \left( {0; + \infty } \right)\end{array} \right.\)
Hàm số \(y = f\left( x \right) = \left| x \right|\) liên tục và xác định trên \(\left( { - \infty ; + \infty } \right)\)
Với số \(h > 0\) ta có: Với \(x \in \left( { - h;h} \right) \subset \left( { - \infty ; + \infty } \right)\) và \(x \ne 0\) thì \(y = f\left( x \right) = \left| x \right| > 0 = f\left( 0 \right)\)
Do đó, hàm số \(y = f\left( x \right) = \left| x \right|\) có cực tiểu là \(x = 0\).
Bài tập 1.8 trang 14 SGK Toán 12 tập 1 Kết nối tri thức thuộc chương 1: Hàm số và đồ thị. Bài tập này thường liên quan đến việc xác định tính đơn điệu của hàm số, tìm khoảng đồng biến, nghịch biến và cực trị của hàm số. Để giải bài tập này một cách hiệu quả, bạn cần nắm vững các kiến thức cơ bản về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
Thông thường, bài tập 1.8 sẽ yêu cầu:
Giả sử bài tập 1.8 yêu cầu khảo sát hàm số y = x3 - 3x2 + 2.
Giải:
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| y' | + | - | + | |
| y | ↗ | ↘ | ↗ |
Hy vọng với hướng dẫn chi tiết này, bạn có thể tự tin giải bài tập 1.8 trang 14 SGK Toán 12 tập 1 Kết nối tri thức. Nếu bạn có bất kỳ thắc mắc nào, đừng ngần ngại liên hệ với tusach.vn để được hỗ trợ.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập