1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài tập 6.19 trang 80 SGK Toán 12 tập 2 - Kết nối tri thức

Giải bài tập 6.19 trang 80 SGK Toán 12 tập 2 - Kết nối tri thức

Giải Bài Tập 6.19 Trang 80 Toán 12 Tập 2 - Kết Nối Tri Thức

Chào mừng các em học sinh đến với lời giải chi tiết bài tập 6.19 trang 80 SGK Toán 12 tập 2 - Kết nối tri thức. Bài tập này thuộc chương trình học về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.

Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp đáp án chính xác, phương pháp giải dễ hiểu và nhanh chóng.

Một nhóm có 25 học sinh, trong đó có 14 em học khá môn Toán, 16 em học khá môn Vật lí, 1 em không học khá cả hai môn Toán và môn Vật lí. Chọn ngẫu nhiên một học sinh trong số đó. Tính xác suất để học sinh đó: a) Học khá môn Toán, đồng thời học khá môn Vật lí; b) Học khá môn Toán, nhưng không học khá môn Vật lí; c) Học khá môn Toán, biết rằng học sinh đó học khá môn Vật lí.

Đề bài

Một nhóm có 25 học sinh, trong đó có 14 em học khá môn Toán, 16 em học khá môn Vật lí, 1 em không học khá cả hai môn Toán và môn Vật lí. Chọn ngẫu nhiên một học sinh trong số đó. Tính xác suất để học sinh đó:

a) Học khá môn Toán, đồng thời học khá môn Vật lí;

b) Học khá môn Toán, nhưng không học khá môn Vật lí;

c) Học khá môn Toán, biết rằng học sinh đó học khá môn Vật lí.

Phương pháp giải - Xem chi tiếtGiải bài tập 6.19 trang 80 SGK Toán 12 tập 2 - Kết nối tri thức 1

Sử dụng kiến thức về công thức tính xác suất có điều kiện để tính: Cho hai biến cố A và B bất kì, với \(P\left( B \right) > 0\). Khi đó, \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}}\).

Lời giải chi tiết

Có 25 học sinh trong một nhóm nên số cách chọn một học sinh trong nhóm là 25. Do đó, \(n\left( \Omega \right) = 25\)

Gọi A là biến cố: “Học sinh học khá môn Toán”, B là biến cố: “Học sinh học khá môn Vật lí”.

a) Khi đó, biến cố AB là: “Học sinh học khá môn Toán, đồng thời học khá môn Vật lí”

Số học sinh học khá cả 2 môn Toán và Vật lí: \(14 + 16 + 1 - 25 = 6\) nên \(n\left( {AB} \right) = 6\)

Do đó, \(P\left( {AB} \right) = \frac{{n\left( {AB} \right)}}{{n\left( \Omega \right)}} = \frac{6}{{25}}\)

b) Số học sinh học khá Toán nhưng không khá Vật lí là: \(14 - 6 = 8\) (học sinh)

Xác suất để chọn được học sinh khá môn Toán, nhưng không học khá môn Vật lí là: \(\frac{8}{{25}}\)

c) Xác suất chọn được một học sinh khá môn Toán, biết rằng học sinh đó học khá môn Vật lí là: \(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{{\frac{6}{{25}}}}{{\frac{{16}}{{25}}}} = \frac{3}{8}\)

Giải Bài Tập 6.19 Trang 80 Toán 12 Tập 2 - Kết Nối Tri Thức: Hướng Dẫn Chi Tiết

Bài tập 6.19 trang 80 SGK Toán 12 tập 2 - Kết nối tri thức yêu cầu chúng ta khảo sát hàm số và tìm các điểm cực trị. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các kiến thức về đạo hàm, điều kiện cực trị và cách xác định khoảng đồng biến, nghịch biến của hàm số.

Đề Bài:

Khảo sát hàm số sau:

y = x3 - 3x2 + 2

Lời Giải:

  1. Xác định tập xác định: Hàm số y = x3 - 3x2 + 2 xác định trên ℝ.
  2. Tính đạo hàm cấp nhất: y' = 3x2 - 6x
  3. Tìm điểm dừng: Giải phương trình y' = 0: 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0. Vậy x = 0 hoặc x = 2.
  4. Lập bảng xét dấu y':
    x-∞02+∞
    y'+-+
    yNBĐBNB

    (NB: Đồng biến, ĐB: Nghịch biến)

  5. Kết luận về khoảng đồng biến, nghịch biến:
    • Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞).
    • Hàm số nghịch biến trên khoảng (0; 2).
  6. Tính đạo hàm cấp hai: y'' = 6x - 6
  7. Tìm điểm uốn: Giải phương trình y'' = 0: 6x - 6 = 0 ⇔ x = 1.
  8. Lập bảng xét dấu y'':
    x-∞1+∞
    y''-+
    Đồ thịLõm xuốngLõm lên
  9. Kết luận về điểm uốn: Hàm số có điểm uốn tại x = 1.
  10. Tìm cực trị:
    • Tại x = 0, y' = 0 và y'' = -6 < 0, hàm số đạt cực đại tại x = 0, y = 2.
    • Tại x = 2, y' = 0 và y'' = 6 > 0, hàm số đạt cực tiểu tại x = 2, yCT = -2.
  11. Tìm giao điểm với các trục tọa độ:
    • Giao điểm với trục Oy: x = 0 ⇒ y = 2. Vậy A(0; 2).
    • Giao điểm với trục Ox: y = 0 ⇒ x3 - 3x2 + 2 = 0 ⇔ (x - 1)(x2 - 2x - 2) = 0. Vậy x = 1 hoặc x = 1 ± √3. Các giao điểm là B(1; 0), C(1 + √3; 0), D(1 - √3; 0).

Kết Luận:

Hàm số y = x3 - 3x2 + 2 có:

  • Điểm cực đại: (0; 2)
  • Điểm cực tiểu: (2; -2)
  • Điểm uốn: (1; 0)
  • Đồng biến trên (-∞; 0) và (2; +∞)
  • Nghịch biến trên (0; 2)

Hy vọng lời giải chi tiết này sẽ giúp các em hiểu rõ hơn về cách giải bài tập khảo sát hàm số. Hãy luyện tập thêm nhiều bài tập khác để nắm vững kiến thức nhé!

Truy cập tusach.vn để xem thêm nhiều bài giải Toán 12 và các môn học khác.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN