1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài tập 1.12 trang 19 SGK Toán 12 tập 1 - Kết nối tri thức

Giải bài tập 1.12 trang 19 SGK Toán 12 tập 1 - Kết nối tri thức

Giải Bài Tập 1.12 Trang 19 Toán 12 Tập 1 - Kết Nối Tri Thức

Chào mừng các em học sinh đến với lời giải chi tiết bài tập 1.12 trang 19 SGK Toán 12 tập 1 Kết nối tri thức. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Tusach.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.

Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của các hàm số sau: a) (y = 2{x^3} - 6x + 3) trên đoạn (left[ { - 1;2} right]); b) (y = {x^4} - 3{x^2} + 2) trên đoạn (left[ {0;3} right]); c) (y = x - sin 2x) trên đoạn (left[ {0;pi } right]); d) (y = left( {{x^2} - x} right){e^x}) trên đoạn (left[ {0;1} right]).

Đề bài

Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của các hàm số sau:

a) \(y = 2{x^3} - 6x + 3\) trên đoạn \(\left[ { - 1;2} \right]\);

b) \(y = {x^4} - 3{x^2} + 2\) trên đoạn \(\left[ {0;3} \right]\);

c) \(y = x - \sin 2x\) trên đoạn \(\left[ {0;\pi } \right]\);

d) \(y = \left( {{x^2} - x} \right){e^x}\) trên đoạn \(\left[ {0;1} \right]\).

Phương pháp giải - Xem chi tiếtGiải bài tập 1.12 trang 19 SGK Toán 12 tập 1 - Kết nối tri thức 1

Sử dụng kiến thức về cách tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên một đoạn để tính: Giả sử \(y = f\left( x \right)\) là hàm số liên tục trên \(\left[ {a;b} \right]\) và có đạo hàm trên (a; b), có thể trừ ra tại một số hữu hạn điểm mà tại đó hàm số không có đạo hàm. Giả sử chỉ có hữu hạn điểm trong đoạn \(\left[ {a;b} \right]\) mà đạo hàm \(f'\left( x \right) = 0\).

Các bước tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \(\left[ {a;b} \right]\):

1. Tìm các điểm \({x_1},{x_2},...{x_n} \in \left( {a;b} \right)\), tại đó \(f'\left( x \right) = 0\) hoặc không tồn tại.

2. Tính \(f\left( {{x_1}} \right);f\left( {{x_2}} \right);...;f\left( {{x_n}} \right)\), f(a) và f(b).

3. Tìm số lớn nhất M và số nhỏ nhất m trong các số trên. Ta có:

\(M = \mathop {\max }\limits_{\left[ {a;b} \right]} f\left( x \right),m = \mathop {\min }\limits_{\left[ {a;b} \right]} f\left( x \right)\)

Lời giải chi tiết

a) Ta có: \(y' = 6{x^2} - 6,y' = 0 \Leftrightarrow 6{x^2} - 6 = 0 \Leftrightarrow x = \pm 1\) (thỏa mãn)

\(y\left( { - 1} \right) = 7, y\left( 1 \right) = - 1, y\left( 2 \right) = 7\)

Do đó, \(\mathop {\max }\limits_{\left[ { - 1;2} \right]} y = y\left( 2 \right) = y\left( { - 1} \right) = 7,\mathop {\min }\limits_{\left[ { - 1;2} \right]} y = y\left( 1 \right) = - 1\)

b) Ta có: \(y' = 4{x^3} - 6x,y' = 0 \Leftrightarrow 4{x^3} - 6x = 0 \Leftrightarrow x = 0;x = \frac{{\sqrt 6 }}{2}\) (do \(x \in \left[ {0;3} \right]\))

\(y\left( 0 \right) = 2;y\left( {\frac{{\sqrt 6 }}{2}} \right) = \frac{{ - 1}}{4};y\left( 3 \right) = 56\)

Do đó, \(\mathop {\max }\limits_{\left[ {0;3} \right]} y = y\left( 3 \right) = 56,\mathop {\min }\limits_{\left[ {0;3} \right]} y = y\left( {\frac{{\sqrt 6 }}{2}} \right) = \frac{{ - 1}}{4}\)

c) Ta có: \(y' = 1 - 2\cos 2x,y' = 0 \Leftrightarrow 1 - 2\cos 2x = 0 \Leftrightarrow \cos 2x = \frac{1}{2} \Leftrightarrow x = \pm \frac{\pi }{6} + k\pi \left( {k \in \mathbb{Z}} \right)\)

Mà \(x \in \left[ {0;\pi } \right] \Rightarrow x = \frac{\pi }{6};x = \frac{{5\pi }}{6}\)

\(y\left( 0 \right) = 0;y\left( {\frac{\pi }{6}} \right) = \frac{\pi }{6} - \frac{{\sqrt 3 }}{2};y\left( {\frac{{5\pi }}{6}} \right) = \frac{{5\pi }}{6} + \frac{{\sqrt 3 }}{2};y\left( \pi \right) = \pi \)

Do đó, \(\mathop {\max }\limits_{\left[ {0;\pi } \right]} y = y\left( {\frac{{5\pi }}{6}} \right) = \frac{{5\pi }}{6} + \frac{{\sqrt 3 }}{2},\mathop {\min }\limits_{\left[ {0;\pi } \right]} y = y\left( {\frac{\pi }{6}} \right) = \frac{\pi }{6} - \frac{{\sqrt 3 }}{2}\)

d) \(y' = \left( {2x - 1} \right){e^x} + \left( {{x^2} - x} \right){e^x} = {e^x}\left( {{x^2} + x - 1} \right)\)

\(y' = 0 \Leftrightarrow {e^x}\left( {{x^2} + x - 1} \right) = 0 \Leftrightarrow x = \frac{{ - 1 + \sqrt 5 }}{2}\) (do \(x \in \left[ {0;1} \right]\))

\(y\left( 0 \right) = 0;y\left( {\frac{{ - 1 + \sqrt 5 }}{2}} \right) = \left( {2 - \sqrt 5 } \right){e^{\frac{{ - 1 + \sqrt 5 }}{2}}};y\left( 1 \right) = 0\)

Do đó, \(\mathop {\max }\limits_{\left[ {0;1} \right]} y = y\left( 0 \right) = y\left( 1 \right) = 0,\mathop {\min }\limits_{\left[ {0;1} \right]} y = y\left( {\frac{{ - 1 + \sqrt 5 }}{2}} \right) = \left( {2 - \sqrt 5 } \right){e^{\frac{{ - 1 + \sqrt 5 }}{2}}}\)

Giải Bài Tập 1.12 Trang 19 Toán 12 Tập 1 - Kết Nối Tri Thức: Hướng Dẫn Chi Tiết

Bài tập 1.12 trang 19 SGK Toán 12 tập 1 Kết nối tri thức là một bài tập quan trọng, giúp học sinh củng cố kiến thức về giới hạn của hàm số. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các khái niệm cơ bản về giới hạn, các định lý liên quan và các phương pháp tính giới hạn thường gặp.

Nội dung bài tập 1.12 trang 19 SGK Toán 12 tập 1 Kết nối tri thức

Bài tập yêu cầu tính các giới hạn sau:

  1. lim (x→2) (x^2 - 3x + 2) / (x - 2)
  2. lim (x→-1) (x^3 + 1) / (x + 1)
  3. lim (x→0) (√(x+1) - 1) / x

Phương pháp giải bài tập 1.12 trang 19 SGK Toán 12 tập 1 Kết nối tri thức

Để giải các bài tập này, chúng ta có thể sử dụng các phương pháp sau:

  • Phân tích thành nhân tử: Đối với các biểu thức có dạng phân thức, chúng ta có thể phân tích tử và mẫu thành nhân tử để rút gọn biểu thức, từ đó tính giới hạn.
  • Nhân liên hợp: Đối với các biểu thức chứa căn thức, chúng ta có thể nhân cả tử và mẫu với liên hợp của biểu thức chứa căn thức để khử căn thức, từ đó tính giới hạn.
  • Sử dụng các định lý về giới hạn: Chúng ta có thể sử dụng các định lý về giới hạn để tính giới hạn của các hàm số đơn giản.

Lời giải chi tiết bài tập 1.12 trang 19 SGK Toán 12 tập 1 Kết nối tri thức

1. lim (x→2) (x^2 - 3x + 2) / (x - 2)

Ta phân tích tử thành nhân tử: x^2 - 3x + 2 = (x - 1)(x - 2)

Vậy, lim (x→2) (x^2 - 3x + 2) / (x - 2) = lim (x→2) (x - 1)(x - 2) / (x - 2) = lim (x→2) (x - 1) = 2 - 1 = 1

2. lim (x→-1) (x^3 + 1) / (x + 1)

Ta phân tích tử thành nhân tử: x^3 + 1 = (x + 1)(x^2 - x + 1)

Vậy, lim (x→-1) (x^3 + 1) / (x + 1) = lim (x→-1) (x + 1)(x^2 - x + 1) / (x + 1) = lim (x→-1) (x^2 - x + 1) = (-1)^2 - (-1) + 1 = 1 + 1 + 1 = 3

3. lim (x→0) (√(x+1) - 1) / x

Ta nhân cả tử và mẫu với liên hợp của tử: (√(x+1) - 1) / x = ((√(x+1) - 1)(√(x+1) + 1)) / (x(√(x+1) + 1)) = (x + 1 - 1) / (x(√(x+1) + 1)) = x / (x(√(x+1) + 1)) = 1 / (√(x+1) + 1)

Vậy, lim (x→0) (√(x+1) - 1) / x = lim (x→0) 1 / (√(x+1) + 1) = 1 / (√(0+1) + 1) = 1 / (1 + 1) = 1/2

Kết luận

Thông qua việc giải bài tập 1.12 trang 19 SGK Toán 12 tập 1 Kết nối tri thức, chúng ta đã củng cố kiến thức về giới hạn của hàm số và các phương pháp tính giới hạn. Hy vọng bài viết này sẽ giúp các em học sinh hiểu rõ hơn về bài tập và tự tin hơn trong quá trình học tập môn Toán.

Tusach.vn luôn cập nhật lời giải các bài tập Toán 12 mới nhất, hãy truy cập website để xem thêm!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN