1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải mục 2 trang 16,17 SGK Toán 12 tập 2 - Kết nối tri thức

Giải mục 2 trang 16,17 SGK Toán 12 tập 2 - Kết nối tri thức

Giải mục 2 trang 16,17 SGK Toán 12 tập 2 - Kết nối tri thức

Tusach.vn xin giới thiệu lời giải chi tiết và dễ hiểu cho mục 2 trang 16,17 sách giáo khoa Toán 12 tập 2 chương trình Kết nối tri thức. Bài viết này sẽ giúp các em học sinh nắm vững kiến thức, hiểu rõ phương pháp giải và tự tin làm bài tập.

Chúng tôi luôn cố gắng cung cấp nội dung chính xác và cập nhật nhất để hỗ trợ tối đa cho quá trình học tập của các em.

Tính chất của tích phân

LT4

    Trả lời câu hỏi Luyện tập 4 trang 17 SGK Toán 12 Kết nối tri thức

    Tính \(\int\limits_0^3 {\left| {2x - 3} \right|dx} \).

    Phương pháp giải:

    Sử dụng kiến thức về tính chất của tích phân để tính: Cho f(x), g(x) là các hàm số liên tục trên đoạn [a; b]. Khi đó, ta có: \(\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^c {f\left( x \right)dx} + \int\limits_c^b {f\left( x \right)dx} \) \(\left( {a < c < b} \right)\).

    Lời giải chi tiết:

    \(\int\limits_0^3 {\left| {2x - 3} \right|dx} = \int\limits_0^{\frac{3}{2}} {\left| {2x - 3} \right|dx} + \int\limits_{\frac{3}{2}}^3 {\left| {2x - 3} \right|dx} = \int\limits_0^{\frac{3}{2}} {\left( {3 - 2x} \right)dx} + \int\limits_{\frac{3}{2}}^3 {\left( {2x - 3} \right)dx} \)

    \( = \left( {3x - {x^2}} \right)\left| \begin{array}{l}\frac{3}{2}\\0\end{array} \right. + \left( {{x^2} - 3x} \right)\left| \begin{array}{l}3\\\frac{3}{2}\end{array} \right. = \left[ {\left( {\frac{9}{2} - \frac{9}{4}} \right) - 0} \right] + \left[ {\left( {{3^2} - 3.3} \right) - \left( {\frac{9}{4} - \frac{9}{2}} \right)} \right] = \frac{9}{2}\)

    HĐ4

      Trả lời câu hỏi Hoạt động 4 trang 16 SGK Toán 12 Kết nối tri thức

      Tính và so sánh:

      a) \(\int\limits_0^1 {2xdx} \) và \(2\int\limits_0^1 {xdx} \);

      b) \(\int\limits_0^1 {\left( {{x^2} + x} \right)dx} \) và \(\int\limits_0^1 {{x^2}dx} + \int\limits_0^1 {xdx} \);

      c) \(\int\limits_0^3 {xdx} \) và \(\int\limits_0^1 {xdx} + \int\limits_1^3 {xdx} \).

      Phương pháp giải:

      Sử dụng kiến thức về định nghĩa tích phân để tính: Cho f(x) là hàm số liên tục trên đoạn [a; b]. Nếu F(x) là một nguyên hàm của hàm số f(x) trên đoạn [a; b] thì hiệu số \(F\left( b \right) - F\left( a \right)\) được gọi là tích phân từ a đến b của hàm số f(x), kí hiệu \(\int\limits_a^b {f\left( x \right)dx} \)

      Lời giải chi tiết:

      a) Ta có: \(\int\limits_0^1 {2xdx} = {x^2}\left| \begin{array}{l}1\\0\end{array} \right. = 1\), \(2\int\limits_0^1 {xdx} = 2.\frac{{{x^2}}}{2}\left| \begin{array}{l}1\\0\end{array} \right. = 1\) nên \(\int\limits_0^1 {2xdx} = 2\int\limits_0^1 {xdx} \)

      b) Ta có: \(\int\limits_0^1 {\left( {{x^2} + x} \right)dx} = \left( {\frac{{{x^3}}}{3} + \frac{{{x^2}}}{2}} \right)\left| \begin{array}{l}1\\0\end{array} \right. = \frac{1}{3} + \frac{1}{2} = \frac{5}{6}\)

      \(\int\limits_0^1 {{x^2}dx} + \int\limits_0^1 {xdx} = \frac{{{x^3}}}{3}\left| \begin{array}{l}1\\0\end{array} \right. + \frac{{{x^2}}}{2}\left| \begin{array}{l}1\\0\end{array} \right. = \frac{1}{3} - 0 + \frac{1}{2} - 0 = \frac{5}{6}\)

      Do đó, \(\int\limits_0^1 {\left( {{x^2} + x} \right)dx} = \int\limits_0^1 {{x^2}dx} + \int\limits_0^1 {xdx} \)

      c) Ta có: \(\int\limits_0^3 {xdx} = \frac{{{x^2}}}{2}\left| \begin{array}{l}3\\0\end{array} \right. = \frac{{{3^2}}}{2} - 0 = \frac{9}{2}\); \(\int\limits_0^1 {xdx} + \int\limits_1^3 {xdx} = \frac{{{x^2}}}{2}\left| \begin{array}{l}1\\0\end{array} \right. + \frac{{{x^2}}}{2}\left| \begin{array}{l}3\\1\end{array} \right. = \frac{1}{2} - 0 + \frac{{{3^2}}}{2} - \frac{1}{2} = \frac{9}{2}\)

      Do đó, \(\int\limits_0^3 {xdx} = \int\limits_0^1 {xdx} + \int\limits_1^3 {xdx} \)

      LT3

        Trả lời câu hỏi Luyện tập 3 trang 17 SGK Toán 12 Kết nối tri thức

        Tính các tích phân sau:

        a) \(\int\limits_0^{2\pi } {\left( {2x + \cos x} \right)dx} \);

        b) \(\int\limits_1^2 {\left( {{3^x} - \frac{3}{x}} \right)dx} \);

        c) \(\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\left( {\frac{1}{{{{\cos }^2}x}} - \frac{1}{{{{\sin }^2}x}}} \right)dx} \).

        Phương pháp giải:

        Sử dụng kiến thức về tính chất của tích phân để tính: Cho f(x), g(x) là các hàm số liên tục trên đoạn [a; b]. Khi đó, ta có:

        + \(\int\limits_a^b {kf\left( x \right)dx} = k\int\limits_a^b {f\left( x \right)dx} \) (k là hằng số)

        + \(\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx} + \int\limits_a^b {g\left( x \right)dx} \)

        + \(\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx} - \int\limits_a^b {g\left( x \right)dx} \)

        Lời giải chi tiết:

        a) \(\int\limits_0^{2\pi } {\left( {2x + \cos x} \right)dx} = 2\int\limits_0^{2\pi } {xdx} + \int\limits_0^{2\pi } {\cos xdx} = 2.\frac{{{x^2}}}{2}\left| \begin{array}{l}2\pi \\0\end{array} \right. + \sin x\left| \begin{array}{l}2\pi \\0\end{array} \right.\)

        \( = {\left( {2\pi } \right)^2} - 0 + \sin 2\pi - \sin 0 = 4{\pi ^2}\)

        b) \(\int\limits_1^2 {\left( {{3^x} - \frac{3}{x}} \right)dx} = \int\limits_1^2 {{3^x}dx} - 3\int\limits_1^2 {\frac{1}{x}dx} = \frac{{{3^x}}}{{\ln 3}}\left| \begin{array}{l}2\\1\end{array} \right. - 3\ln \left| x \right|\left| \begin{array}{l}2\\1\end{array} \right. = \frac{1}{{\ln 3}}\left( {{3^2} - {3^1}} \right) - 3\ln 2 + 3\ln 1\)

        \( = \frac{6}{{\ln 3}} - 3\ln 2\)

        c) \(\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\left( {\frac{1}{{{{\cos }^2}x}} - \frac{1}{{{{\sin }^2}x}}} \right)dx} = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\frac{1}{{{{\cos }^2}x}}dx} - \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\frac{1}{{{{\sin }^2}x}}dx = \tan x\left| \begin{array}{l}\frac{\pi }{3}\\\frac{\pi }{6}\end{array} \right. + \cot x\left| \begin{array}{l}\frac{\pi }{3}\\\frac{\pi }{6}\end{array} \right.} \)

        \( = \tan \frac{\pi }{3} - \tan \frac{\pi }{6} + \cot \frac{\pi }{3} - \cot \frac{\pi }{6} = \sqrt 3 - \frac{{\sqrt 3 }}{3} + \frac{{\sqrt 3 }}{3} - \sqrt 3 = 0\)

        Lựa chọn câu để xem lời giải nhanh hơn
        • HĐ4
        • LT3
        • LT4
        • VD2

        Trả lời câu hỏi Hoạt động 4 trang 16 SGK Toán 12 Kết nối tri thức

        Tính và so sánh:

        a) \(\int\limits_0^1 {2xdx} \) và \(2\int\limits_0^1 {xdx} \);

        b) \(\int\limits_0^1 {\left( {{x^2} + x} \right)dx} \) và \(\int\limits_0^1 {{x^2}dx} + \int\limits_0^1 {xdx} \);

        c) \(\int\limits_0^3 {xdx} \) và \(\int\limits_0^1 {xdx} + \int\limits_1^3 {xdx} \).

        Phương pháp giải:

        Sử dụng kiến thức về định nghĩa tích phân để tính: Cho f(x) là hàm số liên tục trên đoạn [a; b]. Nếu F(x) là một nguyên hàm của hàm số f(x) trên đoạn [a; b] thì hiệu số \(F\left( b \right) - F\left( a \right)\) được gọi là tích phân từ a đến b của hàm số f(x), kí hiệu \(\int\limits_a^b {f\left( x \right)dx} \)

        Lời giải chi tiết:

        a) Ta có: \(\int\limits_0^1 {2xdx} = {x^2}\left| \begin{array}{l}1\\0\end{array} \right. = 1\), \(2\int\limits_0^1 {xdx} = 2.\frac{{{x^2}}}{2}\left| \begin{array}{l}1\\0\end{array} \right. = 1\) nên \(\int\limits_0^1 {2xdx} = 2\int\limits_0^1 {xdx} \)

        b) Ta có: \(\int\limits_0^1 {\left( {{x^2} + x} \right)dx} = \left( {\frac{{{x^3}}}{3} + \frac{{{x^2}}}{2}} \right)\left| \begin{array}{l}1\\0\end{array} \right. = \frac{1}{3} + \frac{1}{2} = \frac{5}{6}\)

        \(\int\limits_0^1 {{x^2}dx} + \int\limits_0^1 {xdx} = \frac{{{x^3}}}{3}\left| \begin{array}{l}1\\0\end{array} \right. + \frac{{{x^2}}}{2}\left| \begin{array}{l}1\\0\end{array} \right. = \frac{1}{3} - 0 + \frac{1}{2} - 0 = \frac{5}{6}\)

        Do đó, \(\int\limits_0^1 {\left( {{x^2} + x} \right)dx} = \int\limits_0^1 {{x^2}dx} + \int\limits_0^1 {xdx} \)

        c) Ta có: \(\int\limits_0^3 {xdx} = \frac{{{x^2}}}{2}\left| \begin{array}{l}3\\0\end{array} \right. = \frac{{{3^2}}}{2} - 0 = \frac{9}{2}\); \(\int\limits_0^1 {xdx} + \int\limits_1^3 {xdx} = \frac{{{x^2}}}{2}\left| \begin{array}{l}1\\0\end{array} \right. + \frac{{{x^2}}}{2}\left| \begin{array}{l}3\\1\end{array} \right. = \frac{1}{2} - 0 + \frac{{{3^2}}}{2} - \frac{1}{2} = \frac{9}{2}\)

        Do đó, \(\int\limits_0^3 {xdx} = \int\limits_0^1 {xdx} + \int\limits_1^3 {xdx} \)

        Trả lời câu hỏi Luyện tập 3 trang 17 SGK Toán 12 Kết nối tri thức

        Tính các tích phân sau:

        a) \(\int\limits_0^{2\pi } {\left( {2x + \cos x} \right)dx} \);

        b) \(\int\limits_1^2 {\left( {{3^x} - \frac{3}{x}} \right)dx} \);

        c) \(\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\left( {\frac{1}{{{{\cos }^2}x}} - \frac{1}{{{{\sin }^2}x}}} \right)dx} \).

        Phương pháp giải:

        Sử dụng kiến thức về tính chất của tích phân để tính: Cho f(x), g(x) là các hàm số liên tục trên đoạn [a; b]. Khi đó, ta có:

        + \(\int\limits_a^b {kf\left( x \right)dx} = k\int\limits_a^b {f\left( x \right)dx} \) (k là hằng số)

        + \(\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx} + \int\limits_a^b {g\left( x \right)dx} \)

        + \(\int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} = \int\limits_a^b {f\left( x \right)dx} - \int\limits_a^b {g\left( x \right)dx} \)

        Lời giải chi tiết:

        a) \(\int\limits_0^{2\pi } {\left( {2x + \cos x} \right)dx} = 2\int\limits_0^{2\pi } {xdx} + \int\limits_0^{2\pi } {\cos xdx} = 2.\frac{{{x^2}}}{2}\left| \begin{array}{l}2\pi \\0\end{array} \right. + \sin x\left| \begin{array}{l}2\pi \\0\end{array} \right.\)

        \( = {\left( {2\pi } \right)^2} - 0 + \sin 2\pi - \sin 0 = 4{\pi ^2}\)

        b) \(\int\limits_1^2 {\left( {{3^x} - \frac{3}{x}} \right)dx} = \int\limits_1^2 {{3^x}dx} - 3\int\limits_1^2 {\frac{1}{x}dx} = \frac{{{3^x}}}{{\ln 3}}\left| \begin{array}{l}2\\1\end{array} \right. - 3\ln \left| x \right|\left| \begin{array}{l}2\\1\end{array} \right. = \frac{1}{{\ln 3}}\left( {{3^2} - {3^1}} \right) - 3\ln 2 + 3\ln 1\)

        \( = \frac{6}{{\ln 3}} - 3\ln 2\)

        c) \(\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\left( {\frac{1}{{{{\cos }^2}x}} - \frac{1}{{{{\sin }^2}x}}} \right)dx} = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\frac{1}{{{{\cos }^2}x}}dx} - \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{3}} {\frac{1}{{{{\sin }^2}x}}dx = \tan x\left| \begin{array}{l}\frac{\pi }{3}\\\frac{\pi }{6}\end{array} \right. + \cot x\left| \begin{array}{l}\frac{\pi }{3}\\\frac{\pi }{6}\end{array} \right.} \)

        \( = \tan \frac{\pi }{3} - \tan \frac{\pi }{6} + \cot \frac{\pi }{3} - \cot \frac{\pi }{6} = \sqrt 3 - \frac{{\sqrt 3 }}{3} + \frac{{\sqrt 3 }}{3} - \sqrt 3 = 0\)

        Trả lời câu hỏi Luyện tập 4 trang 17 SGK Toán 12 Kết nối tri thức

        Tính \(\int\limits_0^3 {\left| {2x - 3} \right|dx} \).

        Phương pháp giải:

        Sử dụng kiến thức về tính chất của tích phân để tính: Cho f(x), g(x) là các hàm số liên tục trên đoạn [a; b]. Khi đó, ta có: \(\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^c {f\left( x \right)dx} + \int\limits_c^b {f\left( x \right)dx} \) \(\left( {a < c < b} \right)\).

        Lời giải chi tiết:

        \(\int\limits_0^3 {\left| {2x - 3} \right|dx} = \int\limits_0^{\frac{3}{2}} {\left| {2x - 3} \right|dx} + \int\limits_{\frac{3}{2}}^3 {\left| {2x - 3} \right|dx} = \int\limits_0^{\frac{3}{2}} {\left( {3 - 2x} \right)dx} + \int\limits_{\frac{3}{2}}^3 {\left( {2x - 3} \right)dx} \)

        \( = \left( {3x - {x^2}} \right)\left| \begin{array}{l}\frac{3}{2}\\0\end{array} \right. + \left( {{x^2} - 3x} \right)\left| \begin{array}{l}3\\\frac{3}{2}\end{array} \right. = \left[ {\left( {\frac{9}{2} - \frac{9}{4}} \right) - 0} \right] + \left[ {\left( {{3^2} - 3.3} \right) - \left( {\frac{9}{4} - \frac{9}{2}} \right)} \right] = \frac{9}{2}\)

        Trả lời câu hỏi Vận dụng 2 trang 17 SGK Toán 12 Kết nối tri thức

        Giá trị trung bình của hàm số liên tục f(x) trên đoạn [a; b] được định nghĩa là \(\frac{1}{{b - a}}\int\limits_a^b {f\left( x \right)dx} \). Giả sử nhiệt độ (tính bằng \(^oC\)) tại thời điểm t giờ trong khoảng thời gian từ 6 giờ sáng đến 12 giờ trưa ở một địa phương vào một ngày nào đó được mô hình hóa bởi hàm số \(T\left( t \right) = 20 + 1,5\left( {t - 6} \right),6 \le t \le 12\). Tìm nhiệt độ trung bình vào ngày đó trong khoảng thời gian từ 6 giờ sáng đến 12 giờ trưa.

        Phương pháp giải:

        Sử dụng kiến thức về định nghĩa tích phân để tính: Cho f(x) là hàm số liên tục trên đoạn [a; b]. Nếu F(x) là một nguyên hàm của hàm số f(x) trên đoạn [a; b] thì hiệu số \(F\left( b \right) - F\left( a \right)\) được gọi là tích phân từ a đến b của hàm số f(x), kí hiệu \(\int\limits_a^b {f\left( x \right)dx} \)

        Lời giải chi tiết:

        Nhiệt độ trung bình vào ngày đó từ khoảng thời gian 6 giờ sáng đến 12 giờ trưa là:

        \(\frac{1}{{12 - 6}}\int\limits_6^{12} {\left[ {20 + 1,5\left( {t - 6} \right)} \right]dt} = \frac{1}{6}\int\limits_6^{12} {\left( {11 + 1,5t} \right)dt = \frac{1}{6}\left( {11t + \frac{3}{4}{t^2}} \right)\left| \begin{array}{l}12\\6\end{array} \right.} \)

        \( = \frac{1}{6}\left[ {\left( {11.12 + \frac{3}{4}{{.12}^2}} \right) - \left( {11.6 + \frac{3}{4}{{.6}^2}} \right)} \right] = 24,{5^0}C\)

        Vậy nhiệt độ trung bình vào ngày đó trong trong khoảng thời gian từ 6 giờ sáng đến 12 giờ trưa là \(24,{5^0}C\).

        VD2

          Trả lời câu hỏi Vận dụng 2 trang 17 SGK Toán 12 Kết nối tri thức

          Giá trị trung bình của hàm số liên tục f(x) trên đoạn [a; b] được định nghĩa là \(\frac{1}{{b - a}}\int\limits_a^b {f\left( x \right)dx} \). Giả sử nhiệt độ (tính bằng \(^oC\)) tại thời điểm t giờ trong khoảng thời gian từ 6 giờ sáng đến 12 giờ trưa ở một địa phương vào một ngày nào đó được mô hình hóa bởi hàm số \(T\left( t \right) = 20 + 1,5\left( {t - 6} \right),6 \le t \le 12\). Tìm nhiệt độ trung bình vào ngày đó trong khoảng thời gian từ 6 giờ sáng đến 12 giờ trưa.

          Phương pháp giải:

          Sử dụng kiến thức về định nghĩa tích phân để tính: Cho f(x) là hàm số liên tục trên đoạn [a; b]. Nếu F(x) là một nguyên hàm của hàm số f(x) trên đoạn [a; b] thì hiệu số \(F\left( b \right) - F\left( a \right)\) được gọi là tích phân từ a đến b của hàm số f(x), kí hiệu \(\int\limits_a^b {f\left( x \right)dx} \)

          Lời giải chi tiết:

          Nhiệt độ trung bình vào ngày đó từ khoảng thời gian 6 giờ sáng đến 12 giờ trưa là:

          \(\frac{1}{{12 - 6}}\int\limits_6^{12} {\left[ {20 + 1,5\left( {t - 6} \right)} \right]dt} = \frac{1}{6}\int\limits_6^{12} {\left( {11 + 1,5t} \right)dt = \frac{1}{6}\left( {11t + \frac{3}{4}{t^2}} \right)\left| \begin{array}{l}12\\6\end{array} \right.} \)

          \( = \frac{1}{6}\left[ {\left( {11.12 + \frac{3}{4}{{.12}^2}} \right) - \left( {11.6 + \frac{3}{4}{{.6}^2}} \right)} \right] = 24,{5^0}C\)

          Vậy nhiệt độ trung bình vào ngày đó trong trong khoảng thời gian từ 6 giờ sáng đến 12 giờ trưa là \(24,{5^0}C\).

          Giải mục 2 trang 16,17 SGK Toán 12 tập 2 - Kết nối tri thức: Tổng quan và Phương pháp giải

          Mục 2 trang 16,17 SGK Toán 12 tập 2 - Kết nối tri thức tập trung vào việc ôn tập chương 3: Đạo hàm. Đây là một phần quan trọng trong chương trình Toán 12, nền tảng cho các kiến thức nâng cao và các bài thi quan trọng như THPT Quốc gia. Việc nắm vững các khái niệm, định lý và kỹ năng giải bài tập trong chương này là vô cùng cần thiết.

          Nội dung chính của Mục 2

          • Ôn tập lý thuyết: Các khái niệm về đạo hàm, quy tắc tính đạo hàm, đạo hàm của hàm số lượng giác, hàm số mũ, hàm số logarit.
          • Các dạng bài tập thường gặp: Tính đạo hàm, tìm cực trị, khảo sát hàm số, ứng dụng đạo hàm để giải các bài toán thực tế.
          • Phương pháp giải: Sử dụng các quy tắc tính đạo hàm, phân tích hàm số, vẽ đồ thị hàm số, áp dụng các định lý về cực trị và điểm uốn.

          Giải chi tiết các bài tập trong Mục 2

          Dưới đây là lời giải chi tiết cho các bài tập trong Mục 2 trang 16,17 SGK Toán 12 tập 2 - Kết nối tri thức:

          Bài 1: Tính đạo hàm của các hàm số sau

          1. f(x) = x3 - 2x2 + 5x - 1
          2. g(x) = sin(2x) + cos(x)
          3. h(x) = ex + ln(x)

          Lời giải:

          • f'(x) = 3x2 - 4x + 5
          • g'(x) = 2cos(2x) - sin(x)
          • h'(x) = ex + 1/x

          Bài 2: Tìm cực trị của hàm số y = x3 - 3x2 + 2

          Lời giải:

          y' = 3x2 - 6x

          Giải phương trình y' = 0, ta được x = 0 hoặc x = 2

          Tính y'' = 6x - 6

          y''(0) = -6 < 0 => Hàm số đạt cực đại tại x = 0, ymax = 2

          y''(2) = 6 > 0 => Hàm số đạt cực tiểu tại x = 2, ymin = -2

          Bài 3: Khảo sát hàm số y = x4 - 4x2 + 3

          Lời giải:

          Tập xác định: R

          Chiều biến thiên: Hàm số có cực đại tại x = -√2 và x = √2, cực tiểu tại x = 0

          Điểm uốn: Không có

          Giới hạn: limx→±∞ y = +∞

          Mẹo giải nhanh và hiệu quả

          • Nắm vững các quy tắc tính đạo hàm cơ bản.
          • Sử dụng các công thức đạo hàm đặc biệt cho các hàm số lượng giác, hàm số mũ, hàm số logarit.
          • Phân tích kỹ đề bài để chọn phương pháp giải phù hợp.
          • Kiểm tra lại kết quả sau khi giải xong.

          Tài liệu tham khảo thêm

          • Sách giáo khoa Toán 12 tập 2 - Kết nối tri thức
          • Sách bài tập Toán 12 tập 2 - Kết nối tri thức
          • Các trang web học Toán trực tuyến uy tín

          Hy vọng với lời giải chi tiết và những hướng dẫn trên, các em học sinh sẽ tự tin hơn trong việc giải các bài tập trong Mục 2 trang 16,17 SGK Toán 12 tập 2 - Kết nối tri thức. Chúc các em học tốt!

          Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

          VỀ TUSACH.VN