1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài tập 5.39 trang 62 SGK Toán 12 tập 2 - Kết nối tri thức

Giải bài tập 5.39 trang 62 SGK Toán 12 tập 2 - Kết nối tri thức

Giải Bài Tập 5.39 Trang 62 Toán 12 Tập 2 - Kết Nối Tri Thức

Chào mừng các em học sinh đến với lời giải chi tiết bài tập 5.39 trang 62 SGK Toán 12 tập 2 - Kết nối tri thức. Bài tập này thuộc chương trình học về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.

Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp đáp án chính xác và phương pháp giải bài tập hiệu quả nhất.

Trong không gian Oxyz, cho mặt cầu (S): \({x^2} + {y^2} + {z^2} - 2x + 4y + 2z - 3 = 0\). Tọa độ tâm I và bán kính R của mặt cầu (S) lần lượt là A. \(I\left( {1; - 2; - 1} \right),R = 3\). B. \(I\left( {1;2;1} \right),R = 9\). C. \(I\left( {1;2;1} \right),R = 3\). D. \(I\left( {1; - 2; - 1} \right),R = 9\).

Đề bài

Trong không gian Oxyz, cho mặt cầu (S): \({x^2} + {y^2} + {z^2} - 2x + 4y + 2z - 3 = 0\). Tọa độ tâm I và bán kính R của mặt cầu (S) lần lượt là

A. \(I\left( {1; - 2; - 1} \right),R = 3\).

B. \(I\left( {1;2;1} \right),R = 9\).

C. \(I\left( {1;2;1} \right),R = 3\).

D. \(I\left( {1; - 2; - 1} \right),R = 9\).

Phương pháp giải - Xem chi tiếtGiải bài tập 5.39 trang 62 SGK Toán 12 tập 2 - Kết nối tri thức 1

Sử dụng kiến thức về phương trình mặt cầu để tính: Với a, b, c, d là các hằng số, phương trình \({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\) có thể viết lại thành \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {a^2} + {b^2} + {c^2} - d\) và là phương trình của một mặt cầu (S) khi và chỉ khi \({a^2} + {b^2} + {c^2} - d > 0\). Khi đó, (S) có tâm \(I\left( {a;{\rm{ }}b;{\rm{ }}c} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \).

Lời giải chi tiết

Phương trình mặt cầu (S) có \(a = 1;b = - 2,c = - 1,d = - 3\)

Do đó, mặt cầu (S) có bán kính \(R = \sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 1} \right)}^2} + 3} = 3\) và tâm \(I\left( {1; - 2; - 1} \right)\)

Chọn A

Giải Bài Tập 5.39 Trang 62 Toán 12 Tập 2 - Kết Nối Tri Thức: Hướng Dẫn Chi Tiết

Bài tập 5.39 trang 62 SGK Toán 12 tập 2 - Kết nối tri thức yêu cầu chúng ta khảo sát hàm số và tìm các điểm cực trị. Để giải bài tập này, chúng ta cần nắm vững kiến thức về đạo hàm, điều kiện cực trị và cách xác định khoảng đồng biến, nghịch biến của hàm số.

Đề Bài Bài Tập 5.39

Cho hàm số y = x3 - 3x2 + 2. Hãy khảo sát hàm số và tìm các điểm cực trị.

Lời Giải Chi Tiết

  1. Xác định tập xác định của hàm số: Hàm số y = x3 - 3x2 + 2 có tập xác định là D = ℝ.
  2. Tính đạo hàm cấp nhất: y' = 3x2 - 6x.
  3. Tìm điểm dừng: Giải phương trình y' = 0, ta được 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0 ⇔ x = 0 hoặc x = 2.
  4. Lập bảng xét dấu đạo hàm cấp nhất:
    x-∞02+∞
    y'+-+
    yNBĐBNB
    (NB: Đồng biến, ĐB: Nghịch biến)
  5. Kết luận về khoảng đồng biến, nghịch biến:
    • Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞).
    • Hàm số nghịch biến trên khoảng (0; 2).
  6. Xác định cực trị:
    • Tại x = 0, y' đổi dấu từ dương sang âm, nên hàm số đạt cực đại tại x = 0. Giá trị cực đại là y(0) = 2.
    • Tại x = 2, y' đổi dấu từ âm sang dương, nên hàm số đạt cực tiểu tại x = 2. Giá trị cực tiểu là y(2) = 23 - 3(22) + 2 = 8 - 12 + 2 = -2.

Kết Luận

Hàm số y = x3 - 3x2 + 2 đạt cực đại tại điểm (0; 2) và đạt cực tiểu tại điểm (2; -2).

Mở Rộng và Lưu Ý

Để hiểu rõ hơn về cách khảo sát hàm số, các em nên luyện tập thêm nhiều bài tập tương tự. Ngoài ra, việc vẽ đồ thị hàm số cũng giúp các em hình dung rõ hơn về tính chất của hàm số và các điểm cực trị.

Tusach.vn hy vọng với lời giải chi tiết này, các em sẽ hiểu rõ hơn về bài tập 5.39 trang 62 SGK Toán 12 tập 2 - Kết nối tri thức và tự tin hơn trong quá trình học tập. Chúc các em học tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN