Chào mừng các em học sinh đến với lời giải chi tiết mục 2 trang 17, 18 SGK Toán 12 tập 1. Bài viết này sẽ giúp các em hiểu rõ hơn về các khái niệm và phương pháp giải bài tập trong chương trình học.
tusach.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán, cung cấp những tài liệu học tập chất lượng và dễ hiểu nhất.
Cho hàm số \(y = \frac{{x + 1}}{{x - 2}}\)có đồ thị (C ) như Hình 1.17. a) Nêu nhận xét về khoảng cách từ điểm \(M(x;y) \in (C)\)đến đường thảng x=2 khi \(x \to 2\) b) Tính các giới hạn \(\mathop {\lim }\limits_{x \to {2^ + }} f(x)\) và \(\mathop {\lim }\limits_{x \to {2^ - }} f(x)\)
Trả lời câu hỏi Hoạt động 2 trang 17 SGK Toán 12 Cùng khám phá
Cho hàm số \(y = \frac{{x + 1}}{{x - 2}}\)có đồ thị (C ) như Hình 1.17.
a) Nêu nhận xét về khoảng cách từ điểm \(M(x;y) \in (C)\)đến đường thảng x=2 khi \(x \to 2\)
b) Tính các giới hạn \(\mathop {\lim }\limits_{x \to {2^ + }} f(x)\) và \(\mathop {\lim }\limits_{x \to {2^ - }} f(x)\)

Phương pháp giải:
a) Nhìn đồ thị hàm số rồi nhận xét
b) Phân tích, rồi tính \(\mathop {\lim }\limits_{x \to {2^ + }} f(x)\) và \(\mathop {\lim }\limits_{x \to {2^ - }} f(x)\)
Lời giải chi tiết:
a) Dựa vào đồ thị hàm số ta thấy:
Khi và thì khoảng cách giữa đồ thị (C) với đường thẳng x = 2 càng nhỏ
b) Ta có \(f\left( x \right)\; = \frac{{x + 1}}{{x - 2}} = 1 + \frac{3}{{x - 2}} = + \infty \;\;\)
\(f\left( x \right)\; = \frac{{x + 1}}{{x - 2}} = 1 + \frac{3}{{x - 2}} = - \infty \;\;\)
Trả lời câu hỏi Luyện tập 2 trang 18 SGK Toán 12 Cùng khám phá
Cho hàm số \(y = f(x) = \frac{{\sqrt {{x^2} + 1} }}{{x + 1}}\) có đồ thị là đường cong như hình 1.20. Hãy xác nhận các đường tiệm cận đứng và đường tiệm cận ngang của hàm số đã cho.

Phương pháp giải:
Xét \(f(x).\)
Lời giải chi tiết:
Ta có \(\mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right)\;\)=\(\mathop {\lim }\limits_{x \to - {1^ - }} \frac{{\sqrt {{x^2} + 1} }}{{x + 1}} = - \infty \;\), \(\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right)\;\)=\(\mathop {\lim }\limits_{x \to - {1^ + }} \frac{{\sqrt {{x^2} + 1} }}{{x + 1}} = + \infty \;\)
Suy ra x = - 1 là đường tiệm cận đứng của hàm số.
Ta có \(\mathop {\lim }\limits_{x \to + \infty } f(x)\; = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {{x^2} + 1} }}{{x + 1}} = \mathop {\lim }\limits_{x \to \infty } \frac{{\sqrt {1 + \frac{1}{{{x^2}}}} }}{{1 + \frac{1}{x}}} = 1\;\;\), \(\mathop {\lim }\limits_{x \to - \infty } f(x)\; = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + 1} }}{{x + 1}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {1 + \frac{1}{{{x^2}}}} }}{{1 + \frac{1}{x}}} = 1\;\;\)
Suy ra y = 1 là đường tiệm cận ngang của hàm số.
Trả lời câu hỏi Hoạt động 2 trang 17 SGK Toán 12 Cùng khám phá
Cho hàm số \(y = \frac{{x + 1}}{{x - 2}}\)có đồ thị (C ) như Hình 1.17.
a) Nêu nhận xét về khoảng cách từ điểm \(M(x;y) \in (C)\)đến đường thảng x=2 khi \(x \to 2\)
b) Tính các giới hạn \(\mathop {\lim }\limits_{x \to {2^ + }} f(x)\) và \(\mathop {\lim }\limits_{x \to {2^ - }} f(x)\)

Phương pháp giải:
a) Nhìn đồ thị hàm số rồi nhận xét
b) Phân tích, rồi tính \(\mathop {\lim }\limits_{x \to {2^ + }} f(x)\) và \(\mathop {\lim }\limits_{x \to {2^ - }} f(x)\)
Lời giải chi tiết:
a) Dựa vào đồ thị hàm số ta thấy:
Khi và thì khoảng cách giữa đồ thị (C) với đường thẳng x = 2 càng nhỏ
b) Ta có \(f\left( x \right)\; = \frac{{x + 1}}{{x - 2}} = 1 + \frac{3}{{x - 2}} = + \infty \;\;\)
\(f\left( x \right)\; = \frac{{x + 1}}{{x - 2}} = 1 + \frac{3}{{x - 2}} = - \infty \;\;\)
Trả lời câu hỏi Luyện tập 2 trang 18 SGK Toán 12 Cùng khám phá
Cho hàm số \(y = f(x) = \frac{{\sqrt {{x^2} + 1} }}{{x + 1}}\) có đồ thị là đường cong như hình 1.20. Hãy xác nhận các đường tiệm cận đứng và đường tiệm cận ngang của hàm số đã cho.

Phương pháp giải:
Xét \(f(x).\)
Lời giải chi tiết:
Ta có \(\mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right)\;\)=\(\mathop {\lim }\limits_{x \to - {1^ - }} \frac{{\sqrt {{x^2} + 1} }}{{x + 1}} = - \infty \;\), \(\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right)\;\)=\(\mathop {\lim }\limits_{x \to - {1^ + }} \frac{{\sqrt {{x^2} + 1} }}{{x + 1}} = + \infty \;\)
Suy ra x = - 1 là đường tiệm cận đứng của hàm số.
Ta có \(\mathop {\lim }\limits_{x \to + \infty } f(x)\; = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {{x^2} + 1} }}{{x + 1}} = \mathop {\lim }\limits_{x \to \infty } \frac{{\sqrt {1 + \frac{1}{{{x^2}}}} }}{{1 + \frac{1}{x}}} = 1\;\;\), \(\mathop {\lim }\limits_{x \to - \infty } f(x)\; = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + 1} }}{{x + 1}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {1 + \frac{1}{{{x^2}}}} }}{{1 + \frac{1}{x}}} = 1\;\;\)
Suy ra y = 1 là đường tiệm cận ngang của hàm số.
Mục 2 trang 17, 18 SGK Toán 12 tập 1 thường xoay quanh các chủ đề về đạo hàm của hàm số, bao gồm các quy tắc tính đạo hàm, đạo hàm của các hàm số cơ bản và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số. Việc nắm vững kiến thức này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình Toán 12.
Mục 2 thường bao gồm các nội dung sau:
Lời giải:
f'(x) = 2x + 3
Lời giải:
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| y' | + | - | + | |
| y | ↗ | ↘ | ↗ |
Vậy hàm số đạt cực đại tại x = 0, y = 2 và đạt cực tiểu tại x = 2, y = -2.
Ngoài SGK Toán 12 tập 1, các em có thể tham khảo thêm các tài liệu sau:
Hy vọng với những hướng dẫn chi tiết và lời giải bài tập trong bài viết này, các em sẽ tự tin hơn trong việc học tập và giải quyết các bài toán liên quan đến đạo hàm. Chúc các em học tốt và đạt kết quả cao trong môn Toán 12!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập