Chào mừng các em học sinh đến với lời giải chi tiết bài tập 5.31 trang 77 SGK Toán 12 tập 2. Bài tập này thuộc chương trình học về Ứng dụng đạo hàm để khảo sát hàm số. tusach.vn luôn đồng hành cùng các em trong quá trình học tập.
Chúng tôi sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin giải các bài tập tương tự.
Tìm tâm và bán kính của các mặt cầu có phương trình sau đây: a) \({x^2} + {(y - 3)^2} + {(z + 2)^2} = 1\) b) \({(x - 2)^2} + {(y - 3)^2} + {z^2} = 4\) c) \({x^2} + {y^2} + {z^2} - 8x - 2y + 1 = 0\) d) \(3{x^2} + 3{y^2} + 3{z^2} - 6x + 8y + 15z - 3 = 0\)
Đề bài
Tìm tâm và bán kính của các mặt cầu có phương trình sau đây:
a) \({x^2} + {(y - 3)^2} + {(z + 2)^2} = 1\)
b) \({(x - 2)^2} + {(y - 3)^2} + {z^2} = 4\)
c) \({x^2} + {y^2} + {z^2} - 8x - 2y + 1 = 0\)
d) \(3{x^2} + 3{y^2} + 3{z^2} - 6x + 8y + 15z - 3 = 0\)
Phương pháp giải - Xem chi tiết
Phương trình của mặt cầu có tâm \(I(a,b,c)\) và bán kính \(R\) có dạng:
\({(x - a)^2} + {(y - b)^2} + {(z - c)^2} = {R^2}\)
- Nếu phương trình đã ở dạng chuẩn, xác định \(a\), \(b\), \(c\) và \(R\) từ phương trình.
- Nếu phương trình chưa chuẩn, đưa về dạng chuẩn bằng cách hoàn phương cho các biến \(x\), \(y\), \(z\).
Lời giải chi tiết
a) \({x^2} + {(y - 3)^2} + {(z + 2)^2} = 1\)
Từ phương trình, ta có:
- Tâm \(I(0,3, - 2)\)
- Bán kính \(R = \sqrt 1 = 1\)
b) \({(x - 2)^2} + {(y - 3)^2} + {z^2} = 4\)
Từ phương trình, ta có:
- Tâm \(I(2,3,0)\)
- Bán kính \(R = \sqrt 4 = 2\)
c) \({x^2} + {y^2} + {z^2} - 8x - 2y + 1 = 0\)
Ta có: \(({x^2} - 8x) + ({y^2} - 2y) + {z^2} = - 1\)
- \(x\): \({x^2} - 8x = {(x - 4)^2} - 16\)
- \(y\): \({y^2} - 2y = {(y - 1)^2} - 1\)
- Phương trình trở thành:
\({(x - 4)^2} + {(y - 1)^2} + {z^2} = 16 + 1 - 1 = 16\)
- Tâm \(I(4,1,0)\)
- Bán kính \(R = \sqrt {16} = 4\)
d) \(3{x^2} + 3{y^2} + 3{z^2} - 6x + 8y + 15z - 3 = 0\)
Chia cả hai vế cho 3: \({x^2} + {y^2} + {z^2} - 2x + \frac{8}{3}y + 5z = 1\)
- \(x\): \({x^2} - 2x = {(x - 1)^2} - 1\)
-\(y\): \({y^2} + \frac{8}{3}y = {\left( {y + \frac{4}{3}} \right)^2} - \frac{{16}}{9}\)
- \(z\): \({z^2} + 5z = {\left( {z + \frac{5}{2}} \right)^2} - \frac{{25}}{4}\)
- Phương trình trở thành:
\({(x - 1)^2} + {\left( {y + \frac{4}{3}} \right)^2} + {\left( {z + \frac{5}{2}} \right)^2} = 1 + 1 + \frac{{16}}{9} + \frac{{25}}{4} = \frac{{79}}{{36}}\)
- Tâm \(I\left( {1, - \frac{4}{3}, - \frac{5}{2}} \right)\)
- Bán kính \(R = \sqrt {\frac{{79}}{{36}}} = \frac{{\sqrt {79} }}{6}\)
Bài tập 5.31 SGK Toán 12 tập 2 yêu cầu chúng ta khảo sát hàm số và tìm các điểm cực trị, khoảng đồng biến, nghịch biến. Cụ thể, đề bài thường cho một hàm số bậc ba hoặc bậc bốn và yêu cầu phân tích các yếu tố trên.
Giả sử bài tập 5.31 có hàm số: y = x3 - 3x2 + 2
Tập xác định của hàm số là D = ℝ (tất cả các số thực).
y' = 3x2 - 6x
Giải phương trình y' = 0: 3x2 - 6x = 0 => 3x(x - 2) = 0 => x = 0 hoặc x = 2
Lập bảng xét dấu y':
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| y' | + | - | + | |
| Hàm số | Đồng biến | Nghịch biến | Đồng biến |
Vậy hàm số đạt cực đại tại x = 0, ycđ = 2 và đạt cực tiểu tại x = 2, yct = -2.
Bảng biến thiên sẽ thể hiện các điểm cực trị, khoảng đồng biến, nghịch biến và giới hạn vô cùng.
Hàm số y = x3 - 3x2 + 2 đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2). Hàm số đạt cực đại tại điểm (0; 2) và cực tiểu tại điểm (2; -2).
Hy vọng với lời giải chi tiết này, các em học sinh sẽ hiểu rõ hơn về cách giải bài tập 5.31 trang 77 SGK Toán 12 tập 2 và các bài tập khảo sát hàm số nói chung. Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập