1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài tập 5.52 trang 87 SGK Toán 12 tập 2 - Cùng khám phá

Giải bài tập 5.52 trang 87 SGK Toán 12 tập 2 - Cùng khám phá

Giải Bài Tập 5.52 Trang 87 Toán 12 Tập 2

Bài tập 5.52 trang 87 SGK Toán 12 tập 2 là một bài toán quan trọng trong chương trình học. Bài tập này thường liên quan đến việc ứng dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Tusach.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập này, giúp các em học sinh hiểu rõ bản chất và phương pháp giải.

Cho hai điểm \(M(1; - 1; - 1)\) và \(N(5;5;1)\). Đường thẳng MN có phương trình là: A. \(\left\{ {\begin{array}{*{20}{l}}{x = 5 + 2t}\\{y = 5 + 3t}\\{z = - 1 + t\quad (t \in \mathbb{R})}\end{array}} \right.\) B. \(\left\{ {\begin{array}{*{20}{l}}{x = 5 + t}\\{y = 5 + 2t}\\{z = 1 + 3t\quad (t \in \mathbb{R})}\end{array}} \right.\) C. \(\left\{ {\begin{array}{*{20}{l}}{x = 1 + 2t}\\{y = - 1 + 3t}\\{z = - 1 + t\quad (t \in \mathbb{R})}\end{array}} \right.\) D. \(\left\{ {\begin{array}{*{

Đề bài

Cho hai điểm \(M(1; - 1; - 1)\) và \(N(5;5;1)\). Đường thẳng MN có phương trình là:

A. \(\left\{ {\begin{array}{*{20}{l}}{x = 5 + 2t}\\{y = 5 + 3t}\\{z = - 1 + t\quad (t \in \mathbb{R})}\end{array}} \right.\)

B. \(\left\{ {\begin{array}{*{20}{l}}{x = 5 + t}\\{y = 5 + 2t}\\{z = 1 + 3t\quad (t \in \mathbb{R})}\end{array}} \right.\)

C. \(\left\{ {\begin{array}{*{20}{l}}{x = 1 + 2t}\\{y = - 1 + 3t}\\{z = - 1 + t\quad (t \in \mathbb{R})}\end{array}} \right.\)

D. \(\left\{ {\begin{array}{*{20}{l}}{x = 1 + 2t}\\{y = - 1 + t}\\{z = - 1 + 3t\quad (t \in \mathbb{R})}\end{array}} \right.\)

Phương pháp giải - Xem chi tiếtGiải bài tập 5.52 trang 87 SGK Toán 12 tập 2 - Cùng khám phá 1

Phương trình đường thẳng đi qua hai điểm \(M({x_1},{y_1},{z_1})\) và \(N({x_2},{y_2},{z_2})\) có dạng:

\(\left\{ {\begin{array}{*{20}{l}}{x = {x_1} + ({x_2} - {x_1})t}\\{y = {y_1} + ({y_2} - {y_1})t}\\{z = {z_1} + ({z_2} - {z_1})t}\end{array}} \right.\) với \(t \in \mathbb{R}\).

Lời giải chi tiết

* Ta có điểm \(M(1; - 1; - 1)\) và \(N(5;5;1)\).

* Vector chỉ phương của đường thẳng MN là: \(\overrightarrow {MN} = (5 - 1,5 - ( - 1),1 - ( - 1)) = (4,6,2)\)

* Thay vào phương trình đường thẳng đi qua \(M\) và song song với \(\overrightarrow {MN} \):

\(\left\{ {\begin{array}{*{20}{l}}{x = 1 + 4t}\\{y = - 1 + 6t}\\{z = - 1 + 2t}\end{array}} \right. = \left\{ {\begin{array}{*{20}{l}}{x = 1 + 2t}\\{y = - 1 + 3t}\\{z = - 1 + 1t}\end{array}} \right.\)

Chọn C

Giải Bài Tập 5.52 Trang 87 SGK Toán 12 Tập 2: Hướng Dẫn Chi Tiết

Bài tập 5.52 trang 87 SGK Toán 12 tập 2 thường thuộc chủ đề về ứng dụng đạo hàm để khảo sát hàm số. Để giải quyết bài tập này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về đạo hàm, cực trị, và điểm uốn của hàm số.

Phân Tích Đề Bài

Trước khi bắt đầu giải, hãy đọc kỹ đề bài và xác định rõ yêu cầu. Thông thường, bài tập 5.52 sẽ yêu cầu chúng ta:

  • Tìm tập xác định của hàm số.
  • Tính đạo hàm bậc nhất và bậc hai của hàm số.
  • Xác định các điểm cực trị của hàm số.
  • Xác định khoảng đồng biến, nghịch biến của hàm số.
  • Tìm điểm uốn của hàm số.
  • Vẽ đồ thị hàm số.

Lời Giải Chi Tiết

Để minh họa, giả sử bài tập 5.52 có nội dung sau:

Cho hàm số y = x3 - 3x2 + 2. Hãy khảo sát hàm số và vẽ đồ thị.

  1. Tìm tập xác định: Hàm số y = x3 - 3x2 + 2 xác định trên tập số thực R.
  2. Tính đạo hàm:
    • y' = 3x2 - 6x
    • y'' = 6x - 6
  3. Tìm cực trị:
    • Giải phương trình y' = 0: 3x2 - 6x = 0 => x = 0 hoặc x = 2
    • Xét dấu y':
      x-∞02+∞
      y'+-++
      yNBĐCTCNB
    • Hàm số đạt cực đại tại x = 0, y = 2. Hàm số đạt cực tiểu tại x = 2, yCT = -2.
  4. Tìm khoảng đồng biến, nghịch biến:
    • Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞).
    • Hàm số nghịch biến trên khoảng (0; 2).
  5. Tìm điểm uốn:
    • Giải phương trình y'' = 0: 6x - 6 = 0 => x = 1
    • Xét dấu y'':
      x-∞1+∞
      y''-++
      Đồ thịLõm xuốngLõm lênLõm lên
    • Hàm số có điểm uốn tại x = 1, yU = 0.
  6. Vẽ đồ thị: Dựa vào các kết quả trên, ta có thể vẽ được đồ thị hàm số.

Lưu Ý Quan Trọng

Khi giải các bài tập về khảo sát hàm số, cần chú ý:

  • Kiểm tra kỹ các bước tính toán đạo hàm.
  • Xác định đúng dấu của đạo hàm để kết luận khoảng đồng biến, nghịch biến.
  • Vẽ đồ thị hàm số một cách chính xác, chú ý đến các điểm cực trị và điểm uốn.

Hy vọng với lời giải chi tiết này, các em học sinh có thể tự tin giải quyết bài tập 5.52 trang 87 SGK Toán 12 tập 2 và các bài tập tương tự. Nếu có bất kỳ thắc mắc nào, đừng ngần ngại liên hệ với Tusach.vn để được hỗ trợ!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN