1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài tập 5.3 trang 51 SGK Toán 12 tập 2 - Cùng khám phá

Giải bài tập 5.3 trang 51 SGK Toán 12 tập 2 - Cùng khám phá

Giải Bài Tập 5.3 Trang 51 Toán 12 Tập 2

Chào mừng các em học sinh đến với lời giải chi tiết bài tập 5.3 trang 51 SGK Toán 12 tập 2. Bài tập này thuộc chương trình Giải tích, cụ thể là phần ứng dụng đạo hàm để khảo sát hàm số.

tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp kiến thức chính xác và dễ hiểu nhất.

Viết phương trình mặt phẳng trung trực của đoạn thẳng AB với \(A(2;3; - 4)\) và \(B(4; - 1;0)\).

Đề bài

Viết phương trình mặt phẳng trung trực của đoạn thẳng AB với \(A(2;3; - 4)\) và \(B(4; - 1;0)\).

Phương pháp giải - Xem chi tiếtGiải bài tập 5.3 trang 51 SGK Toán 12 tập 2 - Cùng khám phá 1

- Trung điểm \(I\) của đoạn thẳng AB là:

\(I\left( {\frac{{{x_A} + {x_B}}}{2},\frac{{{y_A} + {y_B}}}{2},\frac{{{z_A} + {z_B}}}{2}} \right)\)

- Vectơ pháp tuyến của mặt phẳng trung trực là vectơ \(\overrightarrow {AB} \).

Lời giải chi tiết

- Trung điểm \(I\left( {\frac{{2 + 4}}{2};\frac{{3 - 1}}{2};\frac{{ - 4 + 0}}{2}} \right) = (3;1; - 2)\).

- Vectơ pháp tuyến \(\overrightarrow {AB} = (4 - 2; - 1 - 3;0 + 4) = (2; - 4;4)\).

- Phương trình mặt phẳng:

\(2(x - 3) - 4(y - 1) + 4(z + 2) = 0\)

Rút gọn:

\(x - 2y + 2z + 3 = 0\)

Giải Bài Tập 5.3 Trang 51 Toán 12 Tập 2: Chi Tiết và Dễ Hiểu

Bài tập 5.3 trang 51 SGK Toán 12 tập 2 yêu cầu chúng ta khảo sát hàm số và tìm các điểm cực trị. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các bước sau:

  1. Xác định tập xác định của hàm số: Tìm khoảng mà hàm số có nghĩa.
  2. Tính đạo hàm bậc nhất: f'(x) = ?
  3. Tìm điểm dừng: Giải phương trình f'(x) = 0 để tìm các điểm mà đạo hàm bằng 0.
  4. Lập bảng biến thiên: Xác định dấu của f'(x) trên các khoảng xác định bởi các điểm dừng để xác định khoảng hàm số đồng biến, nghịch biến.
  5. Kết luận về cực trị: Dựa vào bảng biến thiên để xác định các điểm cực đại, cực tiểu của hàm số.

Lời Giải Chi Tiết Bài Tập 5.3

Giả sử hàm số cần khảo sát là y = f(x) = x3 - 3x2 + 2 (ví dụ minh họa). Chúng ta sẽ áp dụng các bước trên để giải bài tập này:

Bước 1: Tập xác định

Hàm số y = x3 - 3x2 + 2 có tập xác định là D = ℝ (tập hợp tất cả các số thực).

Bước 2: Tính đạo hàm bậc nhất

f'(x) = 3x2 - 6x

Bước 3: Tìm điểm dừng

Giải phương trình f'(x) = 0:

3x2 - 6x = 0

3x(x - 2) = 0

Vậy, x = 0 hoặc x = 2 là các điểm dừng.

Bước 4: Lập bảng biến thiên

x-∞02+∞
f'(x)+-+
f(x)

Bước 5: Kết luận về cực trị

Dựa vào bảng biến thiên, ta có:

  • Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞).
  • Hàm số nghịch biến trên khoảng (0; 2).
  • Hàm số đạt cực đại tại x = 0, giá trị cực đại là f(0) = 2.
  • Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là f(2) = -2.

Mở Rộng và Lưu Ý

Để hiểu sâu hơn về ứng dụng đạo hàm trong việc khảo sát hàm số, các em có thể tham khảo thêm các bài tập tương tự trong SGK và sách bài tập. Ngoài ra, việc luyện tập thường xuyên sẽ giúp các em nắm vững kiến thức và kỹ năng giải bài tập một cách nhanh chóng và chính xác.

Lưu ý: Khi giải các bài tập về khảo sát hàm số, cần chú ý đến việc xác định đúng tập xác định, tính đạo hàm chính xác và lập bảng biến thiên một cách cẩn thận. Việc kiểm tra lại kết quả cũng rất quan trọng để đảm bảo tính chính xác của lời giải.

Hy vọng lời giải chi tiết này sẽ giúp các em hiểu rõ hơn về cách giải bài tập 5.3 trang 51 SGK Toán 12 tập 2. Chúc các em học tập tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN