Chào mừng các em học sinh đến với lời giải chi tiết bài tập 1.16 trang 22 SGK Toán 12 tập 1. Bài tập này thuộc chương trình học về giới hạn của hàm số, một trong những kiến thức nền tảng quan trọng của môn Toán 12.
Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp những lời giải chính xác, dễ hiểu và phương pháp giải bài tập hiệu quả nhất.
Tìm các đường tiệm cận của mỗi hàm số a) \(y = {x^3} - 2x + x - 9\) b) \(y = \frac{{x - 5}}{{4x + 2}}\) c) \(y = \frac{{{x^2} - 3x + 4}}{{2x + 1}}\) d) \(y = 2x - 1 + \frac{2}{{x + 1}}\)
Đề bài
Tìm các đường tiệm cận của mỗi hàm số
a) \(y = {x^3} - 2x + x - 9\)
b) \(y = \frac{{x - 5}}{{4x + 2}}\)
c) \(y = \frac{{{x^2} - 3x + 4}}{{2x + 1}}\)
d) \(y = 2x - 1 + \frac{2}{{x + 1}}\)
Phương pháp giải - Xem chi tiết
Xét giới hạn các hàm số và áp dụng ghi chú: hàm số \(y = \frac{{a{x^2} + bx + c}}{{mx + n}}\) (\(a \ne 0,m \ne 0\) đa thức tử không chia hết cho đa thức mẫu) luôn được viết dưới dạng \(y = px + q + \frac{r}{{mx + n}}\)\((p,q,r \in R)\). Khi đó đồ thị hàm số có đường tiệm cận đứng \(x = - \frac{n}{m}\)là và đường tiệm cận xiên là\(y = px + q\).
Lời giải chi tiết
a) \(y = {x^3} - 2x + x - 9\)
Hàm số xác định trên R nên hàm số không có tiệm cận đứng.
Lại có vì y là hàm đa thức nên không có tiệm cận ngang.
b) \(y = \frac{{x - 5}}{{4x + 2}}\)
Ta có \(\mathop {\lim }\limits_{x \to + \infty } \frac{{x - 5}}{{4x + 2}} = \frac{1}{4},\mathop {\lim }\limits_{x \to - \infty } \frac{{x - 5}}{{4x + 2}} = \frac{1}{4}.\)
Suy ra y =\(\;\frac{1}{4}\) là đường tiệm cận ngang của hàm số.
Ta có \(\mathop {\lim }\limits_{x \to {{\left( {\frac{{ - 1}}{2}} \right)}^ + }} \frac{{x - 5}}{{4x + 2}} = - \infty ,\mathop {\lim }\limits_{x \to {{\left( {\frac{{ - 1}}{2}} \right)}^ - }} \frac{{x - 5}}{{4x + 2}} = + \infty \).
Suy ra \(x = \frac{{ - 1}}{2}\) đường tiệm cận đứng của hàm số.
c) \(y = \frac{{{x^2} - 3x + 4}}{{2x + 1}}\)
Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} - 3x + 4}}{{2x + 1}} = + \infty ,\mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} - 3x + 4}}{{2x + 1}} = - \infty \).
Suy ra hàm số không có đường tiệm cận ngang.
Ta có: \(\mathop {\lim }\limits_{x \to {{\left( {\frac{{ - 1}}{2}} \right)}^ + }} \frac{{{x^2} - 3x + 4}}{{2x + 1}} = + \infty ,\mathop {\lim }\limits_{x \to {{\left( {\frac{{ - 1}}{2}} \right)}^ - }} \frac{{{x^2} - 3x + 4}}{{2x + 1}} = - \infty \)
Suy ra \(x = \frac{{ - 1}}{2}\) là tiệm cận đứng của đồ thị.
Ta có: \(\frac{{{x^2} - 3x + 4}}{{2x + 1}} = \frac{x}{2} - \frac{7}{4} + \frac{{23}}{{4(2x + 1)}}\)
\( \Rightarrow \mathop {\lim }\limits_{x \to + \infty } \left( {y - \frac{x}{2} + \frac{7}{4}} \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{23}}{{4(2x + 1)}} = 0,\mathop {\lim }\limits_{x \to - \infty } \left( {y - \frac{x}{2} + \frac{7}{4}} \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{23}}{{4(2x + 1)}} = 0.\)
Suy ra \(y = \frac{x}{2} - \frac{7}{4}\) là tiệm cận xiên của đồ thị.
d) \(y = 2x - 1 + \frac{2}{{x + 1}}\)
Ta có: \(\mathop {\lim }\limits_{x \to + \infty } y = 2x - 1 + \frac{2}{{x + 1}} = + \infty ,\mathop {\lim }\limits_{x \to - \infty } y = 2x - 1 + \frac{2}{{x + 1}} = - \infty .\)
Suy ra hàm số không có đường tiệm cận ngang.
Ta có: \(\mathop {\lim }\limits_{x \to - {1^ + }} y = 2x - 1 + \frac{2}{{x + 1}} = + \infty ,\mathop {\lim }\limits_{x \to - {1^ - }} 2x - 1 + \frac{2}{{x + 1}} = - \infty .\)
Suy ra \(x = - 1\) là tiệm cận đứng của đồ thị.
Ta có: \(\mathop {\lim }\limits_{x \to + \infty } \left( {y - 2x + 1} \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{2}{{x + 1}} = 0,\mathop {\lim }\limits_{x \to + \infty } \left( {y - 2x + 1} \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{2}{{x + 1}} = 0.\)
Suy ra \(y = 2x - 1\) là tiệm cận xiên của đồ thị.
Hàm số có đường tiệm cận đứng là \(x = - 1\)và đường tiệm cận xiên là \(y = 2x - 1\).
Bài tập 1.16 trang 22 SGK Toán 12 tập 1 yêu cầu chúng ta tính giới hạn của hàm số khi x tiến tới một giá trị nhất định. Để giải bài tập này, chúng ta cần nắm vững các định nghĩa và tính chất của giới hạn hàm số, cũng như các phương pháp tính giới hạn thường gặp.
Đề bài thường có dạng tính limx→a f(x), trong đó f(x) là một hàm số và a là một giá trị cụ thể.
Giả sử bài tập 1.16 có dạng:
limx→2 (x2 - 4) / (x - 2)
Giải:
Vậy, limx→2 (x2 - 4) / (x - 2) = 4
Tusach.vn cung cấp đầy đủ lời giải các bài tập trong SGK Toán 12 tập 1, tập 2, cùng với các bài tập trắc nghiệm và tài liệu ôn thi THPT Quốc gia. Hãy truy cập tusach.vn để học Toán 12 hiệu quả hơn!
Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập