Bài tập 5.17 trang 64 SGK Toán 12 tập 2 là một bài toán quan trọng trong chương trình học giải tích lớp 12. Bài tập này thường liên quan đến việc ứng dụng đạo hàm để khảo sát hàm số, tìm cực trị và vẽ đồ thị hàm số.
Tusach.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập này, giúp các em học sinh hiểu rõ bản chất và phương pháp giải.
Cho hình hộp ABCD.A'B'C'D' có \(B(3;0;0)\), \(D(0;5;1)\), \[B'(5;0;5)\], \(C'(5;5;6)\). Viết phương trình đường thẳng BD, DD', AB'.
Đề bài
Cho hình hộp ABCD.A'B'C'D' có \(B(3;0;0)\), \(D(0;5;1)\), \(B'(5;0;5)\), \(C'(5;5;6)\). Viết phương trình đường thẳng BD, DD', AB'.
Phương pháp giải - Xem chi tiết
Xác định vectơ chỉ phương của mỗi đường thẳng bằng cách lấy hiệu tọa độ hai điểm thuộc đường thẳng đó. Từ đó lập phương trình tham số của từng đường thẳng.
Lời giải chi tiết
1. Phương trình đường thẳng BD:
- Vectơ chỉ phương của đường thẳng BD:
\(\overrightarrow {BD} = (0 - 3;5 - 0;0 - 0) = ( - 3;5;1)\)
- Phương trình tham số của đường thẳng BD:
\(\left\{ {\begin{array}{*{20}{l}}{x = 3 - 3t}\\{y = 0 + 5t}\\{z = 1t}\end{array}} \right.\quad (t \in \mathbb{R})\)
- Phương trình chính tắc:
\(\frac{{x - 3}}{{ - 3}} = \frac{y}{5} = \frac{z}{1}\)
2. Phương trình đường thẳng DD'
- Vì ABCD.A’B’C’D’ là hình hộp nên:
\(\overrightarrow {BD} = \overrightarrow {B'D'} \,\,\, \to \,\,\,\overrightarrow {OD'} = \overrightarrow {BD} + \overrightarrow {OB'} = ( - 3;5;1) + (5;0;5) = (2;5;6)\)
- Vectơ chỉ phương DD' là:
\(\overrightarrow {DD'} = (2 - 0;5 - 5;6 - 1) = (2;0;5)\)
- Phương trình tham số của đường thẳng DD':
\(\left\{ {\begin{array}{*{20}{l}}{x = 2t}\\{y = 5}\\{z = 1 + 5t}\end{array}} \right.\quad (t \in \mathbb{R})\)
- Phương trình chính tắc:
\(\frac{x}{2} = \frac{{z - 1}}{5}\)
3. Phương trình đường thẳng AB'
- Vì ABCD.A’B’C’D’ là hình hộp nên:
\(\overrightarrow {AB'} = \overrightarrow {DC'} \, = \left( {5 - 0;5 - 5;6 - 1} \right) = \left( {5;0;5} \right)\)
- Vectơ chỉ phương của đường thẳng AB' là: \(\left( {5;0;5} \right)\)
- Phương trình tham số của đường thẳng AB':
\(\left\{ {\begin{array}{*{20}{l}}{x = 5 + 5t}\\{y = 0}\\{z = 5 + 5t}\end{array}} \right.\quad (t \in \mathbb{R})\)
- Phương trình chính tắc:
\(\frac{{x - 5}}{5} = \frac{{y - 5}}{5}\)
Bài tập 5.17 trang 64 SGK Toán 12 tập 2 thường yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các vấn đề liên quan đến hàm số. Để giải quyết bài tập này một cách hiệu quả, chúng ta cần nắm vững các bước sau:
Để minh họa, chúng ta sẽ giải bài tập với hàm số giả định y = x^3 - 3x^2 + 2:
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| y' | + | - | + | |
| y | ↗ | ↘ | ↗ |
Khi giải bài tập về khảo sát hàm số, cần chú ý:
Tusach.vn luôn cập nhật lời giải chi tiết các bài tập trong SGK Toán 12 tập 2, giúp các em học sinh học tập hiệu quả và đạt kết quả cao. Hãy truy cập Tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập