Chào mừng các em học sinh đến với lời giải chi tiết bài tập 2.3 trang 64 SGK Toán 12 tập 1. Bài tập này thuộc chương trình học về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp kiến thức chính xác và dễ hiểu nhất.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Chứng minh rằng: \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \)
Đề bài
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Chứng minh rằng:
\(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \)
Phương pháp giải - Xem chi tiết
Sử dụng tính chất của hình bình hành và phép biến đổi vectơ.
Lời giải chi tiết

Ta có thể viết:
\(\overrightarrow {SA} + \overrightarrow {SC} = (\overrightarrow {SB} + \overrightarrow {BA} ) + (\overrightarrow {SD} + \overrightarrow {DC} )\)
Thay \(\overrightarrow {BA} = - \overrightarrow {AB} \) và \(\overrightarrow {DC} = - \overrightarrow {CD} \) vào biểu thức trên, ta được:
\(\overrightarrow {SA} + \overrightarrow {SC} = (\overrightarrow {SB} - \overrightarrow {AB} ) + (\overrightarrow {SD} - \overrightarrow {CD} )\)
Sử dụng tính chất của hình bình hành:
\(\overrightarrow {AB} = \overrightarrow {DC} \quad {\rm{và}}\quad \overrightarrow {AD} = \overrightarrow {BC} \)
Nên ta có:
\(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} - \overrightarrow {AB} + \overrightarrow {SD} + \overrightarrow {DC} = \overrightarrow {SB} + \overrightarrow {SD} \)
Vậy đẳng thức \(\overrightarrow {SA} + \overrightarrow {SC} = \overrightarrow {SB} + \overrightarrow {SD} \) đã được chứng minh.
Bài tập 2.3 trang 64 SGK Toán 12 tập 1 yêu cầu chúng ta khảo sát hàm số và tìm các điểm cực trị. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các kiến thức về đạo hàm, điều kiện cực trị và cách xác định khoảng đồng biến, nghịch biến của hàm số.
(Đề bài cụ thể của bài tập 2.3 sẽ được chèn vào đây. Ví dụ: Khảo sát hàm số y = x3 - 3x2 + 2)
(Lời giải chi tiết của bài tập 2.3 sẽ được trình bày ở đây, bao gồm các bước giải cụ thể và giải thích rõ ràng. Ví dụ:
Kết luận: Hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2. Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là y = -2.
Để củng cố kiến thức, các em có thể làm thêm các bài tập tương tự sau:
Chúc các em học tập tốt!
Nếu có bất kỳ thắc mắc nào, đừng ngần ngại liên hệ với tusach.vn để được hỗ trợ.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập