Chào mừng các em học sinh đến với lời giải chi tiết bài tập 2.2 trang 54 SGK Toán 12 tập 1. Bài tập này thuộc chương trình học về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp kiến thức chính xác và dễ hiểu nhất.
Cho hình chóp đều S.ABCD có cạnh đáy \(a\) và đường cao \(h\). Gọi M, N, P, Q lần lượt là trung điểm của các cạnh bên SA, SB, SC, SD và O, H lần lượt là tâm của các hình vuông ABCD, MNPQ (Hình 2.6). a) Trong những vectơ khác \(\vec O\), có điểm đầu và điểm cuối là những điểm cho trên hình, hãy liệt kê các vectơ: - Cùng hướng với \(\overrightarrow {MN} \); - Bằng \(\overrightarrow {MN} \). b) Tìm độ dài các vectơ \(\overrightarrow {MP} ,\overrightarrow {MS} \) theo \(a\) và \(h\).
Đề bài
Cho hình chóp đều S.ABCD có cạnh đáy
\(a\) và đường cao \(h\). Gọi M, N, P, Q lần lượt là trung điểm của các cạnh bên SA, SB, SC, SD và O, H lần lượt là tâm của các hình vuông ABCD, MNPQ (Hình 2.6).
a) Trong những vectơ khác \(\vec O\), có điểm đầu và điểm cuối là những điểm cho trên hình, hãy liệt kê các vectơ:
- Cùng hướng với \(\overrightarrow {MN} \);
- Bằng \(\overrightarrow {MN} \).
b) Tìm độ dài các vectơ \(\overrightarrow {MP} ,\overrightarrow {MS} \) theo \(a\) và \(h\).

Phương pháp giải - Xem chi tiết
a) Xác định các vectơ theo yêu cầu đề bài dựa trên lý thuyết về vectơ.
- Hai vectơ được gọi là cùng phương nếu giá của chúng song song hoặc trùng nhau.
- Nếu hai vectơ cùng phương thì chúng có thể cùng hướng hoặc ngược hướng.
- Hai vectơ được gọi là bằng nhau nếu chúng có cùng độ dài và cùng hướng. Nếu hai vectơ \(\vec a,\vec b\) bằng nhau thì ta viết là \(\vec a = \vec b\).
b) Sử dụng công thức và định lý để tính độ dài của vectơ.
Lời giải chi tiết
a) Liệt kê các vectơ
- Cùng hướng với \(\overrightarrow {MN} \):
Vectơ cùng hướng với \(\overrightarrow {MN} \) là các vectơ có phương và chiều giống với \(\overrightarrow {MN} \), cụ thể là: \(\overrightarrow {QP} \), \(\overrightarrow {AB} \), \(\overrightarrow {DC} \).
- Bằng \(\overrightarrow {MN} \):
Vectơ bằng \(\overrightarrow {MN} \) là các vectơ có độ dài và phương chiều giống với \(\overrightarrow {MN} \), cụ thể là: \(\overrightarrow {QP} \)
b) Tính độ dài các vectơ \(\overrightarrow {MP} ,\overrightarrow {MS} \)
- Tính độ dài \(\overrightarrow {MP} \):
Ta xét tam giác đều SAC có MP là đường trung bình của tam giác đều SAC
\(MP = \frac{1}{2}AC = \frac{1}{2} \cdot a\sqrt 2 \) (AC là đường chéo của hình vuông ABCD)
Do đó: \(\overrightarrow {MP} = \frac{{a\sqrt 2 }}{2}\)
- Tính độ dài \(\overrightarrow {MS} \):
Ta xét tam giác vuông SOA với \(O\) là tâm của hình vuông đáy ABCD:
\(SA = \sqrt {{h^2} + {{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}} = \sqrt {{h^2} + \frac{{{a^2}}}{2}} \)
Vì \(M\) là trung điểm của SA, ta có: \(SM = \frac{1}{2}SA = \frac{1}{2}\sqrt {{h^2} + \frac{{{a^2}}}{2}} \)
Do đó: \(\overrightarrow {MS} = \frac{1}{2}\sqrt {{h^2} + \frac{{{a^2}}}{2}} \)
Bài tập 2.2 trang 54 SGK Toán 12 tập 1 thường yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán liên quan đến việc tìm cực trị, khoảng đơn điệu của hàm số. Để giải bài tập này một cách hiệu quả, các em cần nắm vững các bước sau:
Giả sử bài tập 2.2 yêu cầu khảo sát hàm số y = x3 - 3x2 + 2. Chúng ta sẽ áp dụng các bước trên:
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| y' | + | - | + | |
| y | NB | ĐB | NB |
tusach.vn tự hào là một trong những nguồn tài liệu toán học uy tín, cung cấp đầy đủ các bài giải, lý thuyết và bài tập trắc nghiệm cho học sinh THPT. Chúng tôi luôn cập nhật nội dung mới nhất và đảm bảo tính chính xác cao. Hãy truy cập tusach.vn để đồng hành cùng chúng tôi trên con đường chinh phục môn Toán!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập