Chào mừng các em học sinh đến với lời giải chi tiết bài tập 1.22 trang 34 SGK Toán 12 tập 1. Bài tập này thuộc chương trình học về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Tusach.vn luôn đồng hành cùng các em trong quá trình học tập.
Chúng tôi sẽ cung cấp lời giải bài tập một cách rõ ràng, dễ hiểu, giúp các em nắm vững kiến thức và kỹ năng giải toán.
Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau đây: a) (y = frac{{{x^2} + 2x + 2}}{{x + 1}}) b) ({rm{y}} = frac{{{x^2} - 2x - 3}}{{x - 2}}) c)(y = - x + 1 + frac{1}{{x + 1}}) d)(y = frac{{2{x^2} - x + 1}}{{1 - x}})
Đề bài
Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau đây:
a) \(y = \frac{{{x^2} + 2x + 2}}{{x + 1}}\)
b) \({\rm{y}} = \frac{{{x^2} - 2x - 3}}{{x - 2}}\)
c)\(y = - x + 1 + \frac{1}{{x + 1}}\)
d)\(y = \frac{{2{x^2} - x + 1}}{{1 - x}}\)
Phương pháp giải - Xem chi tiết
- Tìm tập xác định của hàm số
- Xét sự biến thiên của hàm số
- Vẽ đồ thị hàm số
Lời giải chi tiết
a)
- Tập xác định: D = R \ {-1}.
- Sự biến thiên:
Giới hạn:
\(\mathop {\lim }\limits_{x \to - {1^ + }} y = \mathop {\lim }\limits_{x \to - {1^ + }} \left( {\frac{{{x^2} + 2x + 2}}{{x + 1}}} \right) = \mathop {\lim }\limits_{x \to - {1^ + }} \left( {\frac{{{{(x + 1)}^2} + 1}}{{x + 1}}} \right) = \mathop {\lim }\limits_{x \to - {1^ + }} \left[ {x + 1 + \frac{1}{{x + 1}}} \right] = \infty \)
\[\mathop {\lim }\limits_{x \to - {1^ - }} y = \mathop {\lim }\limits_{x \to - {1^ - }} \left( {\frac{{{x^2} + 2x + 2}}{{x + 1}}} \right) = \mathop {\lim }\limits_{x \to - {1^ - }} \left[ {x + 1 + \frac{1}{{x + 1}}} \right] = \infty \]
Suy ra x = -1 là tiệm cận đứng của hàm số
\(\mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } \left( {\frac{{{x^2} + 2x + 2}}{{x + 1}}} \right) = \mathop {\lim }\limits_{x \to \infty } (x + 1) + 0 = \infty \)
\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \left( {\frac{{{x^2} + 2x + 2}}{{x + 1}}} \right) = \mathop {\lim }\limits_{x \to - \infty } (x + 1) + 0 = - \infty \)
Suy ra hàm số không có tiệm cận ngang
\(\frac{{{x^2} + 2x + 2}}{{x + 1}} = x + 1 + \frac{1}{{x + 1}}\)
Khi \(x \to \pm \infty ,\frac{1}{{x + 1}} \to 0\) nên \(y = x + 1\) là tiệm cận xiên của hàm số
Ta có: \({y^\prime } = \frac{{(2x + 2)(x + 1) - \left( {{x^2} + 2x + 2} \right)}}{{{{(x + 1)}^2}}} = \frac{{{x^2} + 2x}}{{{{(x + 1)}^2}}}\)
\({y^\prime } = 0 \leftrightarrow {x^2} + 2x \leftrightarrow x(x + 2) = 0 \leftrightarrow x = 0,{\rm{ }}x = - 2\)
Bảng biến thiên:

Chiều biến thiên: Hàm số đồng biến trên các khoảng (−∞,-2) và (-1,0), đồng biến trên khoảng (-2,-1) và (-1,0).
Cực trị: Hàm số đạt cực tiểu tại \(x = 0,{y_{CT}} = 2\)
Hàm số đạt cực đại tại \(x = - 2,{y_{CD}} = - 2\)
- Vẽ đồ thị:
Tiệm cận đứng \({\rm{x}} = - 1\), tiệm cận xiên \(y = x + 1\)
Giao điểm với trục Oy là \((0,2)\)

b)
- Tập xác định: D = R \ {2}.
- Sự biến thiên:
Giới hạn:
\(\mathop {\lim }\limits_{x \to 2 + } y = \mathop {\lim }\limits_{x \to 2 + } \left( {\frac{{{x^2} - 2x - 3}}{{x - 2}}} \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {\frac{{(x - 3)(x + 1)}}{{x - 2}}} \right) = - \infty \)
\(\mathop {\lim }\limits_{x \to {2^ - }} y = \mathop {\lim }\limits_{x \to {2^ - }} \left( {\frac{{{x^2} - 2x - 3}}{{x - 2}}} \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {\frac{{(x - 3)(x + 1)}}{{x - 2}}} \right) = \infty \)
Suy ra x = 2 là tiệm cận đứng của hàm số
\(\mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } \left( {\frac{{{x^2} - 2x - 3}}{{x - 2}}} \right) = \mathop {\lim }\limits_{x \to \infty } \left( {\frac{{(x - 3)(x + 1)}}{{x - 2}}} \right) = \infty \)
\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \left( {\frac{{{x^2} - 2x - 3}}{{x - 2}}} \right) = \mathop {\lim }\limits_{x \to - \infty } \left( {\frac{{(x - 3)(x + 1)}}{{x - 2}}} \right) = - \infty \)
Suy ra hàm số không có tiệm cận ngang
\(\frac{{{x^2} - 2x - 3}}{{x - 2}} = x + \frac{{ - 3}}{{x - 2}}\)
Khi \(x \to \pm \infty ,\frac{{ - 3}}{{x - 2}} \to 0\) nên \(y = x\) là tiệm cận xiên của hàm số
Ta có: \({y^\prime } = \frac{{(2x - 2)(x - 2) - \left( {{x^2} - 2x - 3} \right)}}{{{{(x - 2)}^2}}} = \frac{{{x^2} - 4x + 7}}{{{{(x - 2)}^2}}} > 0\forall x \in D\)
Vậy hàm số đồng biến trên tập xác định
Bảng biến thiên:

Chiều biến thiên: Hàm số đồng biến trên khoảng (-\(\infty ,2\)) và (2,\(\infty \)).
Cực trị: Hàm số không có cực trị
- Vẽ đồ thị:
Tiệm cận đứng x = 2, tiệm cận xiên y = x.
Giao điểm với trục Oy là (0,\(\frac{3}{2}\))
Giao điểm với trục Ox là (-1,0) và (3,0)

c)
- Tập xác định: D = R \ {-1}.
- Sự biến thiên:
Giới hạn:
\(\mathop {\lim }\limits_{x \to - {1^ + }} y = \mathop {\lim }\limits_{x \to - {1^ + }} \left( { - x - 1 + \frac{1}{{x + 1}}} \right) = \infty \)
\(\mathop {\lim }\limits_{x \to - {1^ - }} y = \mathop {\lim }\limits_{x \to - {1^ - }} \left( { - x - 1 + \frac{1}{{x + 1}}} \right) = - \infty \)
Suy ra x = -1 là tiệm cận đứng của hàm số
\(\mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } \left( { - x - 1 + \frac{1}{{x + 1}}} \right) = - \infty \)
\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \left( { - x - 1 + \frac{1}{{x + 1}}} \right) = \infty \)
Suy ra hàm số không có tiệm cận ngang
Khi \(x \to \pm \infty ,\frac{1}{{x + 1}} \to 0\) nên \(y = - x - 1\) là tiệm cận xiên của hàm số
Ta có: \({y^\prime } = - 1 - \frac{1}{{{{(x + 1)}^2}}} < 0\forall x \in D\)
Vậy hàm số nghịch biến trên tập xác định
Bảng biến thiên:

Chiều biến thiên: Hàm số nghịch biến trên khoảng (-\(\infty \),-1).và (-1,\(\infty \)).
Cực trị: Hàm số không có cực trị
- Vẽ đồ thị:
Tiệm cận đứng x = -1, tiệm cận xiên y =- x-1.
Đi qua gốc toạ độ O(0,0) và giao với trục hoành tại điểm (-2,0)

d)
- Tập xác định: D = R \ {1}.
- Sự biến thiên:
Giới hạn:
\(\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \left( {\frac{{2{x^2} - x + 1}}{{1 - x}}} \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {\frac{{(2x + 1)(x - 1) + 2}}{{1 - x}}} \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( { - 2x - 1 + \frac{2}{{1 - x}}} \right) = - \infty \)
\(\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \left( {\frac{{2{x^2} - x + 1}}{{1 - x}}} \right) = \infty \)
Suy ra x = -1 là tiệm cận đứng của hàm số
\(\mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } \left( {\frac{{2{x^2} - x + 1}}{{1 - x}}} \right) = - \infty \)
\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \left( {\frac{{2{x^2} - x + 1}}{{1 - x}}} \right) = \infty \)
Suy ra hàm số không có tiệm cận ngang
Khi \(x \to \pm \infty ,\frac{2}{{1 - x}} \to 0\) nên \(y = - 2x - 1\) là tiệm cận xiên của hàm số
Ta có: \({y^\prime } = \frac{{(4x - 1)(1 - x) + (2{x^2} - x + 1)}}{{{{(1 - x)}^2}}} = \frac{{ - 2{x^2} + 4x}}{{{{(1 - x)}^2}}}\)
\(y' = 0 \Leftrightarrow - 2{x^2} + 4x = 0 \Leftrightarrow x = 0,x = 2\)
Bảng biến thiên:

Chiều biến thiên: Hàm số nghịch biến trên khoảng (-\(\infty \),0) và (2,\(\infty \)), đồng biến trên khoảng (0,1) và (1,2).
Cực trị: Hàm số đạt cực tiểu tại \(x = 0,{y_{CT}} = 1\)
Hàm số đạt cực đại tại \(x = 2,{y_{CD}} = - 7\)
- Vẽ đồ thị:
Tiệm cận đứng x = 1, tiệm cận xiên y =-2x-1.
Giao điểm với trục Oy là (0,1)

Bài tập 1.22 trang 34 SGK Toán 12 tập 1 yêu cầu chúng ta khảo sát hàm số và tìm các điểm cực trị. Để giải bài tập này, chúng ta cần nắm vững các kiến thức về đạo hàm, điều kiện cực trị và cách xác định khoảng đồng biến, nghịch biến của hàm số.
Cho hàm số y = f(x) = x3 - 3x2 + 2. Hãy:
1. Tập xác định:
Hàm số y = x3 - 3x2 + 2 là một hàm đa thức, do đó tập xác định của hàm số là D = ℝ.
2. Tính đạo hàm:
f'(x) = 3x2 - 6x
3. Tìm các điểm cực trị:
Để tìm các điểm cực trị, ta giải phương trình f'(x) = 0:
3x2 - 6x = 0
3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2.
Ta xét dấu của f'(x) trên các khoảng:
Vậy, hàm số đạt cực đại tại x = 0 và cực tiểu tại x = 2.
f(0) = 2, điểm cực đại là (0; 2).
f(2) = 23 - 3(22) + 2 = 8 - 12 + 2 = -2, điểm cực tiểu là (2; -2).
4. Khảo sát sự biến thiên:
Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞).
Hàm số nghịch biến trên khoảng (0; 2).
5. Vẽ đồ thị:
Dựa vào các thông tin đã tìm được, ta có thể vẽ đồ thị của hàm số y = x3 - 3x2 + 2. Đồ thị có dạng đường cong đi qua các điểm cực trị (0; 2) và (2; -2).
Hy vọng lời giải chi tiết này sẽ giúp các em hiểu rõ hơn về cách giải bài tập 1.22 trang 34 SGK Toán 12 tập 1. Chúc các em học tập tốt!
Nếu có bất kỳ thắc mắc nào, đừng ngần ngại đặt câu hỏi trong phần bình luận bên dưới. Tusach.vn luôn sẵn sàng hỗ trợ các em.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập