1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài tập 1.36 trang 46 SGK Toán 12 tập 1 - Cùng khám phá

Giải bài tập 1.36 trang 46 SGK Toán 12 tập 1 - Cùng khám phá

Giải Bài Tập 1.36 Trang 46 Toán 12 Tập 1

Bài tập 1.36 trang 46 SGK Toán 12 tập 1 là một bài toán quan trọng trong chương trình học. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Tusach.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập này, giúp các em học sinh hiểu rõ bản chất và phương pháp giải.

Chuyên viên phân tích thị trường của một công ty X sản xuất máy xay sinh tố nhận thấy rằng, nếu công ty sản xuất x máy xay hằng năm thì tổng lợi nhuận thu được sẽ tính theo công thức: \(y = f(x) = 8x + 0,3{x^2} - 0,0013{x^3} - 372\) (triệu đồng) a) Công ty X cần sản xuất ít nhất bao nhiêu máy xay để không bị lỗ, biết rằng công ty sản xuất 20 máy xay vẫn chưa có lãi? b) Lợi nhuận lớn nhất công ty có thể thu được là bao nhiêu? Khi đó cần sản xuất bao nhiêu máy xay?

Đề bài

Chuyên viên phân tích thị trường của một công ty X sản xuất máy xay sinh tố nhận thấy rằng, nếu công ty sản xuất x máy xay hằng năm thì tổng lợi nhuận thu được sẽ tính theo công thức: \(y = f(x) = 8x + 0,3{x^2} - 0,0013{x^3} - 372\) (triệu đồng)

a) Công ty X cần sản xuất ít nhất bao nhiêu máy xay để không bị lỗ, biết rằng công ty sản xuất 20 máy xay vẫn chưa có lãi?

b) Lợi nhuận lớn nhất công ty có thể thu được là bao nhiêu? Khi đó cần sản xuất bao nhiêu máy xay?

Phương pháp giải - Xem chi tiếtGiải bài tập 1.36 trang 46 SGK Toán 12 tập 1 - Cùng khám phá 1

a) Để tìm số lượng máy xay ít nhất để không bị lỗ:

- Lợi nhuận không âm (không bị lỗ) khi y ≥ 0.

- Giải bất phương trình để tìm giá trị nhỏ nhất thỏa mãn y ≥ 0.

- Do công ty sản xuất 20 máy xay vẫn chưa có lãi nên ta loại bỏ các giá trị nhỏ hơn 20.

b) Để tìm lợi nhuận lớn nhất và số lượng máy xay tương ứng:

- Tìm đạo hàm y'.

- Giải phương trình y' = 0 để tìm các điểm cực trị của hàm số.

- Tính giá trị của hàm số tại các điểm cực trị và tại các đầu mút của khoảng xác định (nếu có) để so sánh và tìm giá trị lớn nhất.

Lời giải chi tiết

a)

Để không bị lỗ thì

Do công ty sản xuất 20 máy xay vẫn chưa có lãi vì

\(f(20) = 8(20) + 0,3{(20)^2} - 0,0013{(20)^3} - 372 = - 102,4\)

Nên ta loại bỏ các giá trị x ≤ 20.

Sử dụng máy tính cầm tay để giải bất phương trình:

\(f(x) \ge 0 \Rightarrow \{ _{25.23 \le x \le 250.76}^{x \le - 45.22}\)

Loại x ≤ -45.22 vì ta có điều kiện x > 20.

Suy ra để công ty X không bị lỗ thì cần sản xuất ít nhất \(\left\lceil {25,23} \right\rceil = 26\)máy xay.

b)

- Đạo hàm của hàm lợi nhuận: \(f'(x) = 8 + 0,6x - 0,0039{x^2}\)

- Giải phương trình \(f'(x) = 0 \Leftrightarrow 8 + 0,6x - 0,0039{x^2} = 0 \Rightarrow \{ _{x = - 12,34(KTMDK)}^{x = 166,19}\)

- Tính giá trị của hàm số tại \(x = \left[ {166,19} \right] = 166\) và tại các đầu mút của khoảng xác định là \(x = 26\) và \(x = 250\) (do số máy xay phải nằm trong khoảng [26;250] thì mới có lợi nhuận) để so sánh và tìm giá trị lớn nhất.

\(x = 166 \to f(166) = 8(166) + 0,3{(166)^2} - 0,0013{(166)^3} - 372 = 3276,1252\)

\(x = 26 \to f(26) = 8(26) + 0,3{(26)^2} - 0,0013{(26)^3} - 372 = 15,9512\)

\(x = 250 \to f(250) = 8(250) + 0,3{(250)^2} - 0,0013{(250)^3} - 372 = 65,5\)

Vậy lợi nhuận lớn nhất mà công ty có thể thu được là 3276,1252 (triệu đồng) và số máy xay cần sản xuất là 166 máy.

Giải Bài Tập 1.36 Trang 46 Toán 12 Tập 1: Hướng Dẫn Chi Tiết

Bài tập 1.36 trang 46 SGK Toán 12 tập 1 thuộc chương trình Giải tích, cụ thể là phần Đạo hàm. Bài toán này thường yêu cầu học sinh áp dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của hàm hợp và đạo hàm của hàm lượng giác. Việc nắm vững kiến thức nền tảng và kỹ năng giải bài tập là vô cùng quan trọng để đạt kết quả tốt trong các kỳ thi.

Nội dung bài tập 1.36 trang 46 SGK Toán 12 tập 1

Thông thường, bài tập 1.36 sẽ yêu cầu:

  • Tính đạo hàm của một hàm số phức tạp.
  • Tìm điều kiện để hàm số có đạo hàm.
  • Sử dụng đạo hàm để giải các bài toán liên quan đến cực trị, khoảng đơn điệu của hàm số.

Lời giải chi tiết bài tập 1.36 trang 46 SGK Toán 12 tập 1

Để giải bài tập này, chúng ta cần thực hiện các bước sau:

  1. Xác định hàm số: Đọc kỹ đề bài để xác định chính xác hàm số cần tính đạo hàm.
  2. Áp dụng quy tắc đạo hàm: Sử dụng các quy tắc đạo hàm đã học (đạo hàm của tổng, hiệu, tích, thương, hàm hợp, hàm lượng giác, hàm mũ, hàm logarit) để tính đạo hàm của hàm số.
  3. Rút gọn biểu thức: Rút gọn biểu thức đạo hàm để có được kết quả cuối cùng.
  4. Kiểm tra lại: Kiểm tra lại kết quả để đảm bảo tính chính xác.

Ví dụ minh họa (Giả định bài tập cụ thể):

Giả sử bài tập 1.36 là: Tính đạo hàm của hàm số y = sin2(2x + 1)

Lời giải:

Ta có: y = sin2(2x + 1)

Sử dụng quy tắc đạo hàm hàm hợp, ta có:

y' = 2sin(2x + 1) * cos(2x + 1) * 2

y' = 4sin(2x + 1)cos(2x + 1)

Sử dụng công thức lượng giác 2sinαcosα = sin2α, ta có:

y' = 2sin(4x + 2)

Mẹo giải bài tập đạo hàm hiệu quả

  • Nắm vững các quy tắc đạo hàm: Đây là nền tảng để giải quyết mọi bài toán về đạo hàm.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để làm quen với các dạng bài và rèn luyện kỹ năng.
  • Sử dụng các công cụ hỗ trợ: Các công cụ tính đạo hàm online có thể giúp bạn kiểm tra kết quả và hiểu rõ hơn về quá trình giải.
  • Phân tích bài toán: Trước khi bắt đầu giải, hãy phân tích bài toán để xác định phương pháp giải phù hợp.

Tusach.vn – Nguồn tài liệu học tập Toán 12 uy tín

Tusach.vn là website cung cấp đầy đủ các tài liệu học tập Toán 12, bao gồm:

  • Giải bài tập SGK Toán 12 tập 1, tập 2
  • Giải bài tập nâng cao Toán 12
  • Đề thi thử Toán 12
  • Các bài viết hướng dẫn giải toán

Hãy truy cập Tusach.vn để có được những tài liệu học tập chất lượng và hỗ trợ tốt nhất cho quá trình học tập của bạn!

Hy vọng với lời giải chi tiết và những hướng dẫn trên, các bạn học sinh sẽ tự tin hơn khi giải bài tập 1.36 trang 46 SGK Toán 12 tập 1 và các bài tập tương tự. Chúc các bạn học tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN