1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài tập 4.34 trang 37 SGK Toán 12 tập 2 - Cùng khám phá

Giải bài tập 4.34 trang 37 SGK Toán 12 tập 2 - Cùng khám phá

Giải Bài Tập 4.34 Trang 37 Toán 12 Tập 2

Chào mừng các em học sinh đến với lời giải chi tiết bài tập 4.34 trang 37 SGK Toán 12 tập 2. Bài tập này thuộc chương trình học về Đạo hàm của hàm số. tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp kiến thức và phương pháp giải bài tập hiệu quả.

Bài tập 4.34 thường yêu cầu các em vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế, hoặc chứng minh các đẳng thức liên quan đến đạo hàm.

Tốc độ tăng cân nặng của một bé gái trong độ tuổi từ 0 đến 36 tháng được ước tính bởi hàm số \(f'(t) = 0,00093{t^2} - 0,04792t + 0,76806{\mkern 1mu} \) (kg/tháng) với \(f(t)\) là cân nặng của bé gái lúc \(t\) tháng tuổi. Hãy ước tính cân nặng của một bé gái 5 tháng tuổi, biết cân nặng trung bình của bé gái khi mới sinh là \(3,3{\mkern 1mu} {\rm{kg}}\).

Đề bài

Tốc độ tăng cân nặng của một bé gái trong độ tuổi từ 0 đến 36 tháng được ước tính bởi hàm số \(f'(t) = 0,00093{t^2} - 0,04792t + 0,76806{\mkern 1mu} \) (kg/tháng) với \(f(t)\) là cân nặng của bé gái lúc \(t\) tháng tuổi. Hãy ước tính cân nặng của một bé gái 5 tháng tuổi, biết cân nặng trung bình của bé gái khi mới sinh là \(3,3{\mkern 1mu} {\rm{kg}}\).

Phương pháp giải - Xem chi tiếtGiải bài tập 4.34 trang 37 SGK Toán 12 tập 2 - Cùng khám phá 1

Tính cân nặng của bé gái sau 5 tháng bằng cách tích phân hàm số tốc độ tăng cân \(f'(t)\) từ 0 đến 5, sau đó cộng với cân nặng ban đầu.

Lời giải chi tiết

Đặt hàm số tốc độ tăng cân:

\(f'(t) = 0,00093{t^2} - 0,04792t + 0,76806\)

Cân nặng của bé gái sau 5 tháng sẽ là:

\(f(5) = f(0) + \int_0^5 {f'} (t){\mkern 1mu} dt\)

Với \(f(0) = 3,3{\mkern 1mu} {\rm{kg}}\).

Ta có tích phân:

\(\int_0^5 {(0.00093{t^2} - 0.04792t + 0.76806)} {\mkern 1mu} dt\)

Tính từng phần của tích phân:

\(\int 0 .00093{t^2}{\mkern 1mu} dt = 0.00031{t^3},\quad \int - 0.04792t{\mkern 1mu} dt = - 0.02396{t^2},\quad \int 0 .76806{\mkern 1mu} dt = 0.76806t\)

Áp dụng cận từ 0 đến 5:

\(\int_0^5 {f'} (t){\mkern 1mu} dt = \left( {0.00031 \times {5^3} - 0.02396 \times {5^2} + 0.76806 \times 5} \right) - \left( {0.00031 \times {0^3} - 0.02396 \times {0^2} + 0.76806 \times 0} \right)\)

\( = (0.00031 \times 125 - 0.02396 \times 25 + 0.76806 \times 5)\)

\( = (0.03875 - 0.599 + 3.8403) = 3.28005{\mkern 1mu} {\rm{kg}}\)

\(f(5) = 3.3 + 3.28005 = 6.58005{\mkern 1mu} {\rm{kg}}\)

Cân nặng của bé gái sau 5 tháng là khoảng \(6.58{\mkern 1mu} {\rm{kg}}\).

Giải Bài Tập 4.34 Trang 37 Toán 12 Tập 2: Hướng Dẫn Chi Tiết

Bài tập 4.34 trang 37 SGK Toán 12 tập 2 thường xoay quanh việc tìm đạo hàm của hàm số, xét tính đơn điệu của hàm số, hoặc giải các bài toán liên quan đến ứng dụng của đạo hàm. Để giải quyết bài tập này một cách hiệu quả, các em cần nắm vững các kiến thức cơ bản về đạo hàm, bao gồm:

  • Định nghĩa đạo hàm: Hiểu rõ đạo hàm của một hàm số tại một điểm là gì và cách tính đạo hàm bằng định nghĩa.
  • Các quy tắc tính đạo hàm: Nắm vững các quy tắc tính đạo hàm của tổng, hiệu, tích, thương, hàm hợp, và các hàm số cơ bản (hàm số mũ, hàm số logarit, hàm số lượng giác).
  • Ứng dụng của đạo hàm: Biết cách sử dụng đạo hàm để xét tính đơn điệu của hàm số, tìm cực trị, và giải các bài toán tối ưu.

Phân Tích Bài Toán 4.34

Trước khi bắt tay vào giải bài tập, hãy đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Xác định các thông tin đã cho và các thông tin cần tìm. Vẽ một sơ đồ hoặc biểu đồ nếu cần thiết để giúp các em hình dung rõ hơn về bài toán.

Lời Giải Chi Tiết Bài Tập 4.34

(Giả sử bài tập 4.34 là: Cho hàm số y = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.)

  1. Bước 1: Tính đạo hàm cấp một y'
  2. y' = 3x2 - 6x

  3. Bước 2: Tìm các điểm làm đạo hàm cấp một bằng 0
  4. 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0

    Vậy, x = 0 hoặc x = 2

  5. Bước 3: Lập bảng biến thiên
  6. x-∞02+∞
    y'+-+
    y
  7. Bước 4: Kết luận
  8. Hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2.

    Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là y = -2.

Mẹo Giải Bài Tập Đạo Hàm

Để giải các bài tập về đạo hàm một cách nhanh chóng và chính xác, các em có thể áp dụng một số mẹo sau:

  • Sử dụng các công thức đạo hàm: Nắm vững các công thức đạo hàm cơ bản và sử dụng chúng một cách linh hoạt.
  • Biến đổi đại số: Đôi khi, các em cần biến đổi đại số để đơn giản hóa biểu thức trước khi tính đạo hàm.
  • Kiểm tra lại kết quả: Sau khi giải xong bài tập, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Luyện Tập Thêm

Để củng cố kiến thức và kỹ năng giải bài tập về đạo hàm, các em nên luyện tập thêm với các bài tập tương tự trong SGK và các tài liệu tham khảo khác. tusach.vn cung cấp đầy đủ các bài giải chi tiết và hướng dẫn giải các bài tập Toán 12, giúp các em học tập hiệu quả hơn.

Chúc các em học tốt và đạt kết quả cao trong môn Toán!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN