Chào mừng các em học sinh đến với lời giải chi tiết bài tập 2.8 trang 65 SGK Toán 12 tập 1. Bài tập này thuộc chương trình học về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp những lời giải chính xác, dễ hiểu và phương pháp giải bài tập hiệu quả.
Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh đều bằng a và (widehat {BAA'} = widehat {BAD} = widehat {DAA'} = {60^circ }). Tính độ dài đường chéo AC’.
Đề bài
Cho hình hộp ABCD.A’B’C’D’ có tất cả các cạnh đều bằng a và
\(\widehat {BAA'} = \widehat {BAD} = \widehat {DAA'} = {60^\circ }\). Tính độ dài đường chéo AC’.
Phương pháp giải - Xem chi tiết
Sử dụng quy tắc hình hộp và công thức tính tích vô hướng của vectơ, từ đó ta có công thức tính độ dài của \(\overrightarrow {AC'} \) là:
\(|\overrightarrow {AC'} | = \sqrt {|\overrightarrow {AB} {|^2} + |\overrightarrow {AD} {|^2} + |\overrightarrow {AA'} {|^2} + 2\overrightarrow {AB} \cdot \overrightarrow {AD} + 2\overrightarrow {AB} \cdot \overrightarrow {AA'} + 2\overrightarrow {AD} \cdot \overrightarrow {AA'} } \)
Lời giải chi tiết

Vì tất cả các cạnh đều bằng a và các góc giữa các cặp vectơ đều là \({\rm{\backslash }}({60^\circ }{\rm{ \backslash }})\), ta có:
\(|\overrightarrow {AB} | = |\overrightarrow {AD} | = |\overrightarrow {AA'} | = a\)
Tích vô hướng giữa các cặp vectơ:
\(\overrightarrow {AB} \cdot \overrightarrow {AD} = {a^2}\cos {60^\circ } = \frac{{{a^2}}}{2}\)
\(\overrightarrow {AB} \cdot \overrightarrow {AA'} = {a^2}\cos {60^\circ } = \frac{{{a^2}}}{2}\)
\(\overrightarrow {AD} \cdot \overrightarrow {AA'} = {a^2}\cos {60^\circ } = \frac{{{a^2}}}{2}\)
Vì ABCD.A’B’C’D’ nên:
\(\overrightarrow {AC'} = \overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} \)
Suy ra:
\(|\overrightarrow {AC'} | = \sqrt {|\overrightarrow {AB} {|^2} + |\overrightarrow {AD} {|^2} + |\overrightarrow {AA'} {|^2} + 2\overrightarrow {AB} \cdot \overrightarrow {AD} + 2\overrightarrow {AB} \cdot \overrightarrow {AA'} + 2\overrightarrow {AD} \cdot \overrightarrow {AA'} } \)
Tính độ dài đường chéo AC':
\(|\overrightarrow {AC'} | = \sqrt {{a^2} + {a^2} + {a^2} + 2\left( {\frac{{{a^2}}}{2}} \right) + 2\left( {\frac{{{a^2}}}{2}} \right) + 2\left( {\frac{{{a^2}}}{2}} \right)} \)
\(|\overrightarrow {AC'} | = \sqrt {3{a^2} + 3{a^2}} = \sqrt {6{a^2}} = a\sqrt 6 \)
Vậy độ dài đường chéo \(AC'\) là \(a\sqrt 6 \).
Bài tập 2.8 trang 65 SGK Toán 12 tập 1 yêu cầu chúng ta khảo sát hàm số và tìm các điểm cực trị. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các kiến thức về đạo hàm, điều kiện cực trị và cách xét dấu đạo hàm.
(Đề bài cụ thể của bài tập 2.8 sẽ được chèn vào đây. Ví dụ: Khảo sát hàm số y = x3 - 3x2 + 2)
Để giải bài tập này, chúng ta thực hiện theo các bước sau:
(Lời giải chi tiết của bài tập 2.8 sẽ được trình bày ở đây, bao gồm các bước tính toán, lập luận và kết luận. Ví dụ:
a) Tập xác định: D = R
b) Đạo hàm: y' = 3x2 - 6x
c) Điểm dừng: 3x2 - 6x = 0 => x = 0 hoặc x = 2
d) Bảng biến thiên:
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| y' | + | - | + | |
| y | NB | ĐB | NT |
e) Kết luận: Hàm số đạt cực đại tại x = 0, yCĐ = 2 và đạt cực tiểu tại x = 2, yCT = -2
)
Để củng cố kiến thức, các em có thể tham khảo thêm các bài tập tương tự sau:
Tusach.vn hy vọng với lời giải chi tiết này, các em sẽ hiểu rõ hơn về cách giải bài tập 2.8 trang 65 SGK Toán 12 tập 1 và tự tin hơn trong quá trình học tập. Chúc các em học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập