Chào mừng các em học sinh đến với lời giải chi tiết bài tập 1.35 trang 46 SGK Toán 12 tập 1. Bài tập này thuộc chương trình học về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
tusach.vn sẽ giúp các em hiểu rõ cách giải bài tập này một cách nhanh chóng và hiệu quả nhất.
Khảo sát sự biến thiên và vẽ đồ thị các hàm số sau: a) \(y = \frac{{3x + 6}}{{2 - x}}\) b) \(y = 2x + \frac{3}{{2 - x}}\)
Đề bài
Khảo sát sự biến thiên và vẽ đồ thị các hàm số sau:
a) \(y = \frac{{3x + 6}}{{2 - x}}\)
b) \(y = 2x + \frac{3}{{2 - x}}\)
Phương pháp giải - Xem chi tiết
- Tìm tập xác định của hàm số
- Xét sự biến thiên của hàm số
- Vẽ đồ thị hàm số
Lời giải chi tiết
a)
- Tập xác định: \(D = R\backslash \{ 2\} \)
- Sự biến thiên:
Giới hạn, tiệm cận:
\(\mathop {\lim }\limits_{x \to + \infty } f(x) = \mathop {\lim }\limits_{x \to + \infty } \frac{{3x + 6}}{{2 - x}} = - 3\)
\(\mathop {\lim }\limits_{x \to - \infty } f(x) = \mathop {\lim }\limits_{x \to - \infty } \frac{{3x + 6}}{{2 - x}} = - 3\)
Suy ra đường thẳng \({\rm{y}} = - 3\) là đường tiệm cận ngang của đồ thị hàm số đã cho
\(\mathop {\lim }\limits_{x \to {2^ + }} f(x) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{3x + 6}}{{2 - x}} = - \infty \)
\(\mathop {\lim }\limits_{x \to {2^ - }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{3x + 6}}{{2 - x}} = \infty \)
Suy ra đường thẳng \({\rm{x}} = 2\). là đường tiệm cận đứng của đồ thị hàm số đã cho
Ta có: \({y^\prime } = \frac{{12}}{{{{(2 - x)}^2}}} > 0\forall x \in D\)
Suy ra hàm số đồng biến trên tập xác định
Bảng biến thiên:

Cực trị: Hàm số không có cực trị
- Vẽ đồ thị
Tiệm cận đứng: \(x = 2\) và tiệm cận ngang \(y = - 3\)
Giao với trục Oy tại điểm (0,3)
Giao với trục Ox tại điểm (-2,0)

b)
- Tập xác định: \(D = R\backslash \{ 2\} \)
- Sự biến thiên:
Giới hạn, tiệm cận:
\[\mathop {\lim }\limits_{x \to + \infty } f(x) = \mathop {\lim }\limits_{x \to + \infty } \left( {2x + \frac{3}{{2 - x}}} \right) = \infty \]
\(\mathop {\lim }\limits_{x \to - \infty } f(x) = \mathop {\lim }\limits_{x \to - \infty } \left( {2x + \frac{3}{{2 - x}}} \right) = - \infty \)
Suy ra hàm số không có tiệm cận ngang
\(\mathop {\lim }\limits_{x \to {2^ + }} f(x) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {2x + \frac{3}{{2 - x}}} \right) = - \infty \)
\(\mathop {\lim }\limits_{x \to {2^ - }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {2x + \frac{3}{{2 - x}}} \right) = \infty \)
Suy ra đường thẳng \({\rm{x}} = 2\). là đường tiệm cận đứng của đồ thị hàm số đã cho
Khi \(x \to \pm \infty ,\frac{3}{{2 - x}} \to 0\)nên đường thẳng \(y = 2x\) là tiệm cận xiên của đồ thị hàm số đã cho.
Ta có: \({y^\prime } = 2 + \frac{3}{{{{(2 - x)}^2}}} > 0\forall x \in D\)
Suy ra hàm số đồng biến trên tập xác định
Bảng biến thiên:

- Vẽ đồ thị
Giao điểm với trục Ox là \(\left( {\frac{{2 + \sqrt {10} }}{2};0} \right),\left( {\frac{{2 - \sqrt {10} }}{2};0} \right)\)
Giao điểm với trục Oy là \(\left( {0;\frac{3}{2}} \right)\)

Bài tập 1.35 SGK Toán 12 tập 1 yêu cầu chúng ta khảo sát hàm số và tìm các điểm cực trị. Cụ thể, đề bài thường cho một hàm số bậc ba hoặc bậc bốn và yêu cầu:
Để giải quyết bài tập này một cách hiệu quả, chúng ta cần nắm vững các kiến thức sau:
Giả sử đề bài cho hàm số: y = x3 - 3x2 + 2
Hàm số y = x3 - 3x2 + 2 là hàm đa thức nên tập xác định của hàm số là D = ℝ.
y' = 3x2 - 6x
y'' = 6x - 6
Giải phương trình y' = 0: 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0 ⇔ x = 0 hoặc x = 2
Xét dấu y' trên các khoảng xác định:
Vậy hàm số đạt cực đại tại x = 0, giá trị cực đại là y(0) = 2 và đạt cực tiểu tại x = 2, giá trị cực tiểu là y(2) = -2.
Dựa vào bảng biến thiên và các điểm cực trị, ta có thể vẽ được đồ thị hàm số.
Bài tập 1.35 trang 46 SGK Toán 12 tập 1 là một bài tập quan trọng giúp các em củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Hy vọng với lời giải chi tiết và phương pháp giải trên, các em sẽ tự tin hơn khi giải các bài tập tương tự.
Nếu có bất kỳ thắc mắc nào, đừng ngần ngại đặt câu hỏi tại tusach.vn. Chúng tôi luôn sẵn sàng hỗ trợ các em!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập