Chào mừng các em học sinh đến với lời giải chi tiết mục 1 trang 2,3,4 SGK Toán 12 tập 1. Tại tusach.vn, chúng tôi luôn cố gắng cung cấp những giải pháp học tập tốt nhất, giúp các em hiểu rõ kiến thức và tự tin làm bài tập.
Bài viết này sẽ trình bày đầy đủ các bước giải, phân tích từng bài tập một cách dễ hiểu, đảm bảo các em có thể tự học và nâng cao kết quả học tập.
Tính đơn điệu của hàm số và dấu của đạo hàm
Trả lời câu hỏi Hoạt động 2 trang 4 SGK Toán 12 Kết nối tri thức
Cho hàm số \(y = f(x) = {x^3} + 1\)
a) Bằng định nghĩa, hãy cho biết hàm \(f(x)\)có đồng biến trên \(R\) hay không
b) Hãy nhận xét về dấu của đạo hàm \(f'(x)\) trên \(R\)
Phương pháp giải:
a) Gọi \({x_1}\), \({x_2}\) sao cho \({x_1},{x_2} \in R\) và\({x_1} > {x_2}\)
Xét dấu của \(f({x_1}) - f({x_2})\)
b) Tính \(f'(x)\) qua đó xét dấu của \(f'(x)\)
Lời giải chi tiết:
a) Gọi \({x_1}\), \({x_2}\) sao cho \({x_1},{x_2} \in R\)và \({x_1} > {x_2}\)
Ta có: \(f({x_1}) - f({x_2})\)= \(({x_1} + 1) - ({x_2} + 1)\)= \({x_1} - {x_2}\)
Mà \({x_1} > {x_2}\) \( \Rightarrow {x_1} - {x_2} > 0\)
Nên \(f({x_1}) - f({x_2}) > 0\) \( \Rightarrow f({x_1}) > f({x_2})\)
Suy ra hàm số \(y = f(x) = {x^3} + 1\) đồng biến trên \(R\)
b) Ta có: \(f'(x) = 3{x^2}\)
Vì \(3{x^2} > 0\) với \(\forall x \in R\)
Nên \(f'(x) > 0\) với \(\forall x \in R\)
Trả lời câu hỏi Hoạt động 1 trang 2 SGK Toán 12 Cùng khám phá
Hình 1.2 là đồ thị (C) của hàm số \(y = f(x) = \frac{{ - 1}}{2}{x^2} + 3\)

a) Quan sát đồ thị hàm số (C) và chỉ ra các khoảng đồng biến, nghịch biến của hàm số đã cho.
b) Xác định dấu của đạo hàm \(f'(x)\) khi \(x\)thuộc các khoảng đồng biến, nghịch biến ở câu.
c) Ghi lại và hoàn thành bảng biến thiên sau

Phương pháp giải:
a) Sử dụng khái niệm hàm số đồng biến, hàm số nghịch biến trên khoảng (a;b)
Hàm số \(y = f(x)\)gọi là đồng biến trên khoảng \((a;b)\) nếu với mọi \({x_1},{x_2} \in (a;b)\) mà \({x_1} < {x_2}\) thì ta có \(f({x_1}) < f({x_2})\)
Hàm số \(y = f(x)\) gọi là nghịch biến trên khoảng \((a;b)\) nếu với mọi \({x_1},{x_2} \in (a;b)\) mà \({x_1} > {x_2}\) thì ta có \(f({x_1}) < f({x_2})\)
b) Chọn vài giá trị của x nằm trong khoảng đồng biến , nghịch biến ở câu a rồi thay vào \(f'(x)\)xem \(f'(x)\) có giá trị âm hay dương.
c) Áp dụng kết quả câu a và câu b rồi điền vào
Lời giải chi tiết:
a) Hàm số \(y = f(x)\) xác định trên R
Nhìn hình 1.2 ta thấy:
Hàm số \(f(x) = \frac{{ - 1}}{2}{x^2} + 3\) đồng biến trên khoảng \(( - \infty ;0)\)
Hàm số \(f(x) = \frac{{ - 1}}{2}{x^2} + 3\) nghịch biến trên khoảng \((0; + \infty )\)
b) Ta có \(f'(x) = - x\)
Ta thấy: Với \(x > 0\)thì \(f'(x) < 0\)
Với \(x < 0\) thì \(f'(x) > 0\)
c)

Trả lời câu hỏi Luyện tập 2 trang 5 SGK Toán 12 Kết nối tri thức
Xét tính đơn điệu của hàm số \(y = \sin x - x\)trên khoảng \(( - \pi ;\pi )\)
Phương pháp giải:
Bước 1: tính đạo hàm \(y'\)
Bước 2: xét dấu \(y'\) rồi lập bảng biến thiên
Bước 3: Từ bảng biến thiên nhận xét tính đơn điệu của hàm số
Lời giải chi tiết:
Hàm số đã cho xác định trên
Ta có: \(y' = \cos x - 1\)
Vì \(\cos x \le 1\)với \(\forall x \in R\)
Nên \(y' \le 0\)với \(\forall x \in R\)và \(y' = 0\)tại \(x = 0\)
Khi đó ta có bảng biến thiên:

Vậy hàm số nghịch biến trên khoảng \(( - \pi ;\pi )\)
Trả lời câu hỏi Luyện tập 1 trang 4 SGK Toán 12 Kết nối tri thức
Lập bảng biến thiên và kết luận các khoảng đồng biến, nghịch biến của hàm số.
a) \(y = f(x) = \frac{{2x - 1}}{{x + 3}}\)
b) \(y = f(x) = \cos x\) trên khoảng \((0;2\pi )\)
Phương pháp giải:
Bước 1: Xét \(f'(x) = 0\)qua đó tìm x
Bước 2: Xét dấu \(f'(x)\)
Bước 3: lập bảng biến thiên
Lời giải chi tiết:
a) \(y = f(x) = \frac{{2x - 1}}{{x + 3}}\)
Hàm số trên xác định trên R\ {-3}
Ta có: \(f'(x) = \frac{{2(x + 3) - (2x - 1)}}{{{{(x + 3)}^2}}}\)
\(f'(x) = \frac{7}{{{{(x + 3)}^2}}}\)
Vì \(f'(x) > 0\)với \(\forall x \ne - 3\) từ đó ta có bảng biến thiên

Từ bảng biến thiên ta có,
Hàm số \(y = f(x) = \frac{{2x - 1}}{{x + 3}}\) đồng biến trên khoảng \(( - \infty ; - 3)\)và \(( - 3; + \infty )\)
b) \(y = f(x) = \cos x\) trên khoảng \((0;2\pi )\)
Hàm số trên xác định trên R
Ta có \(y = f'(x) = - \sin x\)
Xét \(f'(x) = - \sin x = 0\) \( \Rightarrow x = k\pi \)
Mà \(x \in (0;2\pi )\) \( \Rightarrow x = \pi \)
Khi đó ta có bảng biến thiên

Từ bảng biến thiên ta có
Hàm số \(f(x) = \cos x\) đồng biến trên khoảng\((\pi ;2\pi )\)
Hàm số \(f(x) = \cos x\) nghịch biến trên khoảng\((0;\pi )\)
Trả lời câu hỏi Hoạt động 1 trang 2 SGK Toán 12 Cùng khám phá
Hình 1.2 là đồ thị (C) của hàm số \(y = f(x) = \frac{{ - 1}}{2}{x^2} + 3\)

a) Quan sát đồ thị hàm số (C) và chỉ ra các khoảng đồng biến, nghịch biến của hàm số đã cho.
b) Xác định dấu của đạo hàm \(f'(x)\) khi \(x\)thuộc các khoảng đồng biến, nghịch biến ở câu.
c) Ghi lại và hoàn thành bảng biến thiên sau

Phương pháp giải:
a) Sử dụng khái niệm hàm số đồng biến, hàm số nghịch biến trên khoảng (a;b)
Hàm số \(y = f(x)\)gọi là đồng biến trên khoảng \((a;b)\) nếu với mọi \({x_1},{x_2} \in (a;b)\) mà \({x_1} < {x_2}\) thì ta có \(f({x_1}) < f({x_2})\)
Hàm số \(y = f(x)\) gọi là nghịch biến trên khoảng \((a;b)\) nếu với mọi \({x_1},{x_2} \in (a;b)\) mà \({x_1} > {x_2}\) thì ta có \(f({x_1}) < f({x_2})\)
b) Chọn vài giá trị của x nằm trong khoảng đồng biến , nghịch biến ở câu a rồi thay vào \(f'(x)\)xem \(f'(x)\) có giá trị âm hay dương.
c) Áp dụng kết quả câu a và câu b rồi điền vào
Lời giải chi tiết:
a) Hàm số \(y = f(x)\) xác định trên R
Nhìn hình 1.2 ta thấy:
Hàm số \(f(x) = \frac{{ - 1}}{2}{x^2} + 3\) đồng biến trên khoảng \(( - \infty ;0)\)
Hàm số \(f(x) = \frac{{ - 1}}{2}{x^2} + 3\) nghịch biến trên khoảng \((0; + \infty )\)
b) Ta có \(f'(x) = - x\)
Ta thấy: Với \(x > 0\)thì \(f'(x) < 0\)
Với \(x < 0\) thì \(f'(x) > 0\)
c)

Trả lời câu hỏi Luyện tập 1 trang 4 SGK Toán 12 Kết nối tri thức
Lập bảng biến thiên và kết luận các khoảng đồng biến, nghịch biến của hàm số.
a) \(y = f(x) = \frac{{2x - 1}}{{x + 3}}\)
b) \(y = f(x) = \cos x\) trên khoảng \((0;2\pi )\)
Phương pháp giải:
Bước 1: Xét \(f'(x) = 0\)qua đó tìm x
Bước 2: Xét dấu \(f'(x)\)
Bước 3: lập bảng biến thiên
Lời giải chi tiết:
a) \(y = f(x) = \frac{{2x - 1}}{{x + 3}}\)
Hàm số trên xác định trên R\ {-3}
Ta có: \(f'(x) = \frac{{2(x + 3) - (2x - 1)}}{{{{(x + 3)}^2}}}\)
\(f'(x) = \frac{7}{{{{(x + 3)}^2}}}\)
Vì \(f'(x) > 0\)với \(\forall x \ne - 3\) từ đó ta có bảng biến thiên

Từ bảng biến thiên ta có,
Hàm số \(y = f(x) = \frac{{2x - 1}}{{x + 3}}\) đồng biến trên khoảng \(( - \infty ; - 3)\)và \(( - 3; + \infty )\)
b) \(y = f(x) = \cos x\) trên khoảng \((0;2\pi )\)
Hàm số trên xác định trên R
Ta có \(y = f'(x) = - \sin x\)
Xét \(f'(x) = - \sin x = 0\) \( \Rightarrow x = k\pi \)
Mà \(x \in (0;2\pi )\) \( \Rightarrow x = \pi \)
Khi đó ta có bảng biến thiên

Từ bảng biến thiên ta có
Hàm số \(f(x) = \cos x\) đồng biến trên khoảng\((\pi ;2\pi )\)
Hàm số \(f(x) = \cos x\) nghịch biến trên khoảng\((0;\pi )\)
Trả lời câu hỏi Hoạt động 2 trang 4 SGK Toán 12 Kết nối tri thức
Cho hàm số \(y = f(x) = {x^3} + 1\)
a) Bằng định nghĩa, hãy cho biết hàm \(f(x)\)có đồng biến trên \(R\) hay không
b) Hãy nhận xét về dấu của đạo hàm \(f'(x)\) trên \(R\)
Phương pháp giải:
a) Gọi \({x_1}\), \({x_2}\) sao cho \({x_1},{x_2} \in R\) và\({x_1} > {x_2}\)
Xét dấu của \(f({x_1}) - f({x_2})\)
b) Tính \(f'(x)\) qua đó xét dấu của \(f'(x)\)
Lời giải chi tiết:
a) Gọi \({x_1}\), \({x_2}\) sao cho \({x_1},{x_2} \in R\)và \({x_1} > {x_2}\)
Ta có: \(f({x_1}) - f({x_2})\)= \(({x_1} + 1) - ({x_2} + 1)\)= \({x_1} - {x_2}\)
Mà \({x_1} > {x_2}\) \( \Rightarrow {x_1} - {x_2} > 0\)
Nên \(f({x_1}) - f({x_2}) > 0\) \( \Rightarrow f({x_1}) > f({x_2})\)
Suy ra hàm số \(y = f(x) = {x^3} + 1\) đồng biến trên \(R\)
b) Ta có: \(f'(x) = 3{x^2}\)
Vì \(3{x^2} > 0\) với \(\forall x \in R\)
Nên \(f'(x) > 0\) với \(\forall x \in R\)
Trả lời câu hỏi Luyện tập 2 trang 5 SGK Toán 12 Kết nối tri thức
Xét tính đơn điệu của hàm số \(y = \sin x - x\)trên khoảng \(( - \pi ;\pi )\)
Phương pháp giải:
Bước 1: tính đạo hàm \(y'\)
Bước 2: xét dấu \(y'\) rồi lập bảng biến thiên
Bước 3: Từ bảng biến thiên nhận xét tính đơn điệu của hàm số
Lời giải chi tiết:
Hàm số đã cho xác định trên
Ta có: \(y' = \cos x - 1\)
Vì \(\cos x \le 1\)với \(\forall x \in R\)
Nên \(y' \le 0\)với \(\forall x \in R\)và \(y' = 0\)tại \(x = 0\)
Khi đó ta có bảng biến thiên:

Vậy hàm số nghịch biến trên khoảng \(( - \pi ;\pi )\)
Mục 1 của SGK Toán 12 tập 1 thường xoay quanh các kiến thức cơ bản về hàm số bậc hai, bao gồm định nghĩa, tính chất, đồ thị và ứng dụng. Việc nắm vững kiến thức này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình học.
Bài tập này yêu cầu học sinh xác định chính xác các hệ số a, b, c trong hàm số bậc hai đã cho. Đây là bước quan trọng để phân tích và vẽ đồ thị hàm số.
Ví dụ: Cho hàm số y = 2x2 - 5x + 3. Xác định a, b, c.
Giải: a = 2, b = -5, c = 3.
Sử dụng công thức tính đỉnh và trục đối xứng để xác định các yếu tố quan trọng của đồ thị hàm số. Việc này giúp học sinh hiểu rõ hình dạng và vị trí của parabol.
Ví dụ: Tìm đỉnh và trục đối xứng của parabol y = x2 - 4x + 3.
Giải: a = 1, b = -4, c = 3. x0 = -(-4)/(2*1) = 2. y0 = -( (-4)2 - 4*1*3 ) / (4*1) = -1. Vậy đỉnh là I(2; -1) và trục đối xứng là x = 2.
Dựa vào các yếu tố đã tìm được (đỉnh, trục đối xứng, giao điểm với trục tọa độ), học sinh vẽ đồ thị hàm số một cách chính xác.
tusach.vn hy vọng với lời giải chi tiết và hướng dẫn cụ thể này, các em sẽ tự tin hơn trong việc học tập môn Toán 12. Chúc các em học tốt!
| Bài tập | Lời giải |
|---|---|
| Bài 1 | Xem chi tiết ở trên |
| Bài 2 | Xem chi tiết ở trên |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập