Chào mừng các em học sinh đến với lời giải chi tiết bài tập 1.2 trang 9 SGK Toán 12 tập 1. Bài tập này thuộc chương trình học về giới hạn của hàm số, một trong những kiến thức nền tảng quan trọng của môn Toán 12.
tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp những lời giải chính xác, dễ hiểu và phương pháp giải bài tập hiệu quả nhất.
a) (y = - {x^3} + {x^2} - 5) b) (y = sqrt {{x^2} - x - 20} ) c) (y = {e^{{x^2}}}) d) (y = frac{x}{{{x^2} + 4}})
Đề bài
a) \(y = - {x^3} + {x^2} - 5\)
b) \(y = \sqrt {{x^2} - x - 20} \)
c) \(y = {e^{{x^2}}}\)
d) \(y = \frac{x}{{{x^2} + 4}}\)
Phương pháp giải - Xem chi tiết
Bước 1: Tính \(y'\)
Bước 2: Lập bảng biến thiên
Bước 3: Xác định hàm số đồng biến, nghịch biến trên khoảng nào
Lời giải chi tiết
a) \(y = - {x^3} + {x^2} - 5\)
Hàm số trên xác định trên R
Ta có : \(y' = - 3{x^2} + 2x\)
Xét \(y' = - 3{x^2} + 2x = 0\)\( \Rightarrow \left[ \begin{array}{l}x = 0\\x = \frac{2}{3}\end{array} \right.\)
Từ đó ta có bảng biến thiên :

Từ bảng biến thiên ta có:
Hàm số đồng biến trên khoảng \(\left( {0;\frac{2}{3}} \right)\)
Hàm số nghịch biến trên khoảng \(( - \infty ;0)\),\(\left( {\frac{2}{3}; + \infty } \right)\)
b) \(y = \sqrt {{x^2} - x - 20} \)
Hàm số trên xác định với \({x^2} - x - 20 \ge 0 \Rightarrow \left[ \begin{array}{l}x \ge 5\\x \le - 4\end{array} \right.\)
Ta có : \(y' = \frac{{2x - 1}}{{2\sqrt {{x^2} - x - 20} }}\)
Xét \(y' = 0\)\( \Rightarrow 2x - 1 = 0\)
\( \Rightarrow x = \frac{1}{2}\)
Từ đó ta có bảng biến thiên:

Từ bảng biến thiên ta có:
Hàm số đồng biến trên khoảng \((5; + \infty )\)
Hàm số nghịch biến trên khoảng \(( - \infty ; - 4)\)
c) \(y = {e^{{x^2}}}\)
Hàm số trên xác định trên R
Ta có: \(y' = {e^{{x^2}}}.2x\)
Xét \(y' = 0\)\( \Rightarrow x = 0\)
Ta có bảng biến thiên

Từ bảng biến thiên ta có:
Hàm số trên nghịch biến trên khoảng\(( - \infty ;0)\)
Hàm số trên đồng biến trên khoảng\((0; + \infty )\)
d) \(y = \frac{x}{{{x^2} + 4}}\)
Hàm số trên xác định trên R
Ta có: \(y' = \frac{{{x^2} + 4 - x.2x}}{{{{({x^2} + 4)}^2}}}\)
\( = \frac{{ - {x^2} + 4}}{{{{({x^2} + 4)}^2}}}\)
Xét \(y' = 0\)\( \Rightarrow - {x^2} + 4 = 0\)\( \Rightarrow \left[ \begin{array}{l}x = 2\\x = - 2\end{array} \right.\)
Ta có bảng biến thiên

Từ bảng biến thiên ta có:
Hàm số trên nghịch biến trên khoảng \(( - \infty ; - 2),(2; + \infty )\)
Hàm số trên đồng biến trên khoảng \(( - 2;2)\)
Bài tập 1.2 trang 9 SGK Toán 12 tập 1 thường xoay quanh việc tính giới hạn của hàm số tại một điểm. Để giải quyết bài tập này, các em cần nắm vững các kiến thức cơ bản về giới hạn, bao gồm:
Để minh họa, chúng ta sẽ cùng giải một ví dụ cụ thể. Giả sử bài tập 1.2 yêu cầu tính giới hạn của hàm số f(x) = (x^2 - 1) / (x - 1) khi x tiến tới 1.
Ngoài dạng bài tập tính giới hạn trực tiếp, bài tập 1.2 và các bài tập tiếp theo trong SGK Toán 12 tập 1 còn xuất hiện các dạng bài tập khác như:
Để giải bài tập Toán 12 hiệu quả, các em nên:
Bài tập 1.2 trang 9 SGK Toán 12 tập 1 là một bài tập quan trọng giúp các em củng cố kiến thức về giới hạn của hàm số. Hy vọng với lời giải chi tiết và phương pháp giải hiệu quả mà tusach.vn cung cấp, các em sẽ tự tin hơn trong quá trình học tập môn Toán 12.
| Dạng Bài Tập | Phương Pháp Giải |
|---|---|
| Tính giới hạn trực tiếp | Thay trực tiếp giá trị hoặc phân tích thành nhân tử |
| Tính giới hạn bằng nhân liên hợp | Nhân tử và mẫu với liên hợp của biểu thức |
| Tính giới hạn vô cùng | Chia cả tử và mẫu cho lũy thừa cao nhất của x |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập