Chào mừng các em học sinh đến với lời giải chi tiết bài tập 2.39 trang 84 SGK Toán 12 tập 1. Bài tập này thuộc chương trình học về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp kiến thức chính xác và dễ hiểu nhất.
Nếu \(\vec a = (1;1;0)\), \(\vec b = (1;1; - 3)\) thì \(\cos (\vec a,\vec b)\) bằng: A. \(\frac{{\sqrt {22} }}{{11}}\). B. \(\frac{{11}}{2}\). C. \(\frac{{11}}{{\sqrt {22} }}\). D. \(\frac{2}{{11}}\).
Đề bài
Nếu \(\vec a = (1;1;0)\), \(\vec b = (1;1; - 3)\) thì \(\cos (\vec a,\vec b)\) bằng:
A. \(\frac{{\sqrt {22} }}{{11}}\).
B. \(\frac{{11}}{2}\).
C. \(\frac{{11}}{{\sqrt {22} }}\).
D. \(\frac{2}{{11}}\).
Phương pháp giải - Xem chi tiết
Sử dụng công thức cosin giữa hai vectơ: \(\cos (\vec a,\vec b) = \frac{{\vec a \cdot \vec b}}{{|\vec a||\vec b|}}\), trong đó: \(|\vec a| = \sqrt {x_a^2 + y_a^2 + z_a^2} \) và \(|\vec b| = \sqrt {x_b^2 + y_b^2 + z_b^2} \).
Lời giải chi tiết
- Tính tích vô hướng của \(\vec a\) và \(\vec b\):
\(\vec a \cdot \vec b = 1 \cdot 1 + 1 \cdot 1 + 0 \cdot ( - 3) = 1 + 1 = 2\).
- Tính độ lớn của \(\vec a\) và \(\vec b\):
\(|\vec a| = \sqrt {{1^2} + {1^2} + {0^2}} = \sqrt 2 ,\quad |\vec b| = \sqrt {{1^2} + {1^2} + {{( - 3)}^2}} = \sqrt {11} \)
- Tính \(\cos (\vec a,\vec b)\):
\(\cos (\vec a,\vec b) = \frac{2}{{\sqrt 2 \cdot \sqrt {11} }} = \frac{2}{{\sqrt {22} }} = \frac{{2 \cdot \sqrt {22} }}{{22}} = \frac{{\sqrt {22} }}{{11}}\)
Chọn A.
Bài tập 2.39 trang 84 SGK Toán 12 tập 1 yêu cầu chúng ta khảo sát hàm số và tìm cực trị. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các bước sau:
Để minh họa, chúng ta sẽ cùng giải bài tập 2.39 với hàm số cụ thể (ví dụ: y = x3 - 3x2 + 2). (Lưu ý: Bài tập gốc có thể có hàm số khác, hãy thay thế hàm số này bằng hàm số trong SGK)
Hàm số y = x3 - 3x2 + 2 có tập xác định là D = ℝ (tập hợp tất cả các số thực).
y' = 3x2 - 6x
Giải phương trình y' = 0:
3x2 - 6x = 0
3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2
Xét dấu của y':
Tại x = 0, hàm số đạt cực đại: y(0) = 2
Tại x = 2, hàm số đạt cực tiểu: y(2) = -2
Khi giải các bài tập về khảo sát hàm số, hãy luôn kiểm tra lại các bước tính toán và đảm bảo rằng bạn đã hiểu rõ các khái niệm liên quan. Việc vẽ đồ thị hàm số sẽ giúp bạn kiểm tra lại kết quả và hiểu rõ hơn về tính chất của hàm số.
tusach.vn không chỉ cung cấp lời giải chi tiết mà còn có các bài giảng, bài tập trắc nghiệm và tài liệu học tập khác để giúp bạn học Toán 12 một cách hiệu quả nhất. Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu hữu ích khác!
| Điểm | Giá trị hàm số |
|---|---|
| x = 0 | y = 2 (Cực đại) |
| x = 2 | y = -2 (Cực tiểu) |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập