Chào mừng các em học sinh đến với lời giải chi tiết bài tập 1.47 trang 49 SGK Toán 12 tập 1. Bài tập này thuộc chương trình học về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp những lời giải chính xác, dễ hiểu và đầy đủ nhất.
Mỗi đợt xuất khẩu gạo của tỉnh A thường kéo dài trong 60 ngày. Người ta nhận thấy lượng gạo xuất khẩu tính theo ngày thứ \(t\) được xác định bởi công thức: \(S(t) = \frac{2}{5}{t^3} - 63{t^2} + 3240t - 3100\) (tấn) \((1 \le t \le 60)\). Hỏi trong 60 ngày đó, ngày thứ mấy có lượng gạo xuất khẩu cao nhất? A. 60. B. 45. C. 30. D. 25.
Đề bài
Mỗi đợt xuất khẩu gạo của tỉnh A thường kéo dài trong 60 ngày. Người ta nhận thấy lượng gạo xuất khẩu tính theo ngày thứ \(t\) được xác định bởi công thức: \(S(t) = \frac{2}{5}{t^3} - 63{t^2} + 3240t - 3100\) (tấn) \((1 \le t \le 60)\). Hỏi trong 60 ngày đó, ngày thứ mấy có lượng gạo xuất khẩu cao nhất?
A. 60
B. 45
C. 30
D. 25
Phương pháp giải - Xem chi tiết
- Tính đạo hàm của hàm số.
- Giải phương trình đạo hàm bằng 0 để tìm các giá trị t tới hạn trong khoảng [1;60].
- Tính giá trị của hàm số tại các điểm tới hạn và tại các đầu mút.
- So sánh các giá trị của hàm số tại các điểm này để tìm giá trị lớn nhất và xác định ngày tương ứng.
Lời giải chi tiết
Đạo hàm của hàm số: \(S'(t) = \frac{6}{5}{t^2} - 126t + 3240\)
Đặt \(S'(t) = 0:\) \(\frac{6}{5}{t^2} - 126t + 3240 = 0 \Rightarrow \{ _{t = 45}^{t = 60}\)
Tính giá trị của hàm số tại các điểm tới hạn và các điểm biên:
\(S(1) = \frac{2}{5}{(1)^3} - 63{(1)^2} + 3240(1) - 3100 = \frac{2}{5} - 63 + 3240 - 3100 = 0.4 - 63 + 3240 - 3100 = 77.4\)
\(S(60) = \frac{2}{5}{(60)^3} - 63{(60)^2} + 3240(60) - 3100 = 86400 - 226800 + 194400 - 3100 = 54100\)
\(S(45) = \frac{2}{5} \cdot {(45)^3} - 63.{(45)^2} + 3240(45) - 3100 = 36450 - 127575 + 145800 - 3100 = 51875\)
Nhận thấy giá trị lớn nhất là 54100 tại t=60.
Vậy ngày có lượng gạo xuất khẩu cao nhất là ngày thứ 60.
Chọn A.
Bài tập 1.47 trang 49 SGK Toán 12 tập 1 là một bài toán quan trọng trong chương trình học về đạo hàm. Bài toán này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế, cụ thể là tìm điểm cực trị của hàm số.
(Đề bài sẽ được chèn vào đây - ví dụ: Cho hàm số y = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.)
Để giải bài tập về điểm cực trị, chúng ta cần thực hiện các bước sau:
(Lời giải chi tiết sẽ được trình bày ở đây, bao gồm các bước tính toán, giải thích rõ ràng và kết luận.)
Ví dụ, với hàm số y = x3 - 3x2 + 2:
Khi giải bài tập về điểm cực trị, các em cần lưu ý những điều sau:
Để củng cố kiến thức, các em có thể làm thêm các bài tập tương tự sau:
Bài tập 1.47 trang 49 SGK Toán 12 tập 1 là một bài toán điển hình về ứng dụng của đạo hàm trong việc tìm điểm cực trị của hàm số. Việc nắm vững phương pháp giải bài tập này sẽ giúp các em tự tin hơn khi giải các bài toán tương tự trong các kỳ thi.
Tusach.vn hy vọng rằng lời giải chi tiết này sẽ giúp các em hiểu rõ hơn về bài tập và có thêm kiến thức để học tập tốt hơn. Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập