Chào mừng các em học sinh đến với lời giải chi tiết bài tập 2.7 trang 65 SGK Toán 12 tập 1. Bài tập này thuộc chương trình học về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp những kiến thức Toán 12 chính xác và dễ hiểu nhất.
Cho hình lập phương ABCD.EFGH có cạnh bằng a. Tính: a) \(\overrightarrow {BC} .\overrightarrow {AH} ;\) b) \(\overrightarrow {AF} .\overrightarrow {EG} ;\) c) \(\overrightarrow {AC} .\overrightarrow {FE} .\)
Đề bài
Cho hình lập phương ABCD.EFGH có cạnh bằng a. Tính:
a) \(\overrightarrow {BC} .\overrightarrow {AH} ;\)
b) \(\overrightarrow {AF} .\overrightarrow {EG} ;\)
c) \(\overrightarrow {AC} .\overrightarrow {FE} .\)
Phương pháp giải - Xem chi tiết
Để tính tích vô hướng giữa hai vectơ, ta có thể áp dụng công thức:
\(\vec u \cdot \vec v = |\vec u| \cdot |\vec v| \cdot \cos \theta \)
Lời giải chi tiết

Giả sử hình lập phương ABCD.EFGH có cạnh \(a\).
a) Tính \(\overrightarrow {BC} \cdot \overrightarrow {AH} \):
- \(|\overrightarrow {BC} | = a\)
- \(|\overrightarrow {AH} | = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \)
- Góc giữa \(\overrightarrow {BC} \) và \(\overrightarrow {AH} \) là \({45^^\circ }\) vì \(\overrightarrow {BC} = \overrightarrow {AD} \) mà \(\widehat {\left( {\overrightarrow {AD} ,\overrightarrow {AH} } \right)} = 45^\circ \)
Do đó:
\(\overrightarrow {BC} \cdot \overrightarrow {AH} = |\overrightarrow {BC} | \cdot |\overrightarrow {AH} | \cdot \cos {45^\circ } = a \cdot a\sqrt 2 \cdot \frac{1}{{\sqrt 2 }} = {a^2}\)
b) Tính \(\overrightarrow {AF} \cdot \overrightarrow {EG} \):
- \(|\overrightarrow {AF} | = a\sqrt 2 \)
- \(|\overrightarrow {EG} | = a\sqrt 2 \)
- Góc giữa \(\overrightarrow {AF} \) và \(\overrightarrow {EG} \) là \({60^\circ }\) vì \(\overrightarrow {EG} = \overrightarrow {AC} \) mà tam giác ACF đều.
Do đó:
\(\overrightarrow {AF} \cdot \overrightarrow {EG} = |\overrightarrow {AF} | \cdot |\overrightarrow {EG} | \cdot \cos {60^\circ } = a\sqrt 2 \cdot a\sqrt 2 \cdot \frac{1}{2} = {a^2}\)
c) Tính \(\overrightarrow {AC} \cdot \overrightarrow {FE} \):
- \(|\overrightarrow {AC} | = a\sqrt 2 \)
- \(|\overrightarrow {FE} | = a\)
- Góc giữa \(\overrightarrow {AC} \) và \(\overrightarrow {FE} \) là \({135^\circ }\) vì góc giữa \(\overrightarrow {AC} \) và vectơ đối của \(\overrightarrow {FE} \) là \(\overrightarrow {EF} \) là \(45^\circ \) mà \(\widehat {\left( {\overrightarrow {AC} ,\overrightarrow {EF} } \right)} + \widehat {\left( {\overrightarrow {AC} ,\overrightarrow {FE} } \right)} = 180^\circ \)
Do đó:
\(\overrightarrow {AC} \cdot \overrightarrow {FE} = |\overrightarrow {AC} | \cdot |\overrightarrow {FE} | \cdot \cos {135^\circ } = a\sqrt 2 \cdot a \cdot \cos {135^\circ }\)
Vì \(\cos {135^\circ } = - \frac{1}{{\sqrt 2 }}\), ta có:
\(\overrightarrow {AC} \cdot \overrightarrow {FE} = a\sqrt 2 \cdot a \cdot \left( { - \frac{1}{{\sqrt 2 }}} \right) = - {a^2}\)
Bài tập 2.7 trang 65 SGK Toán 12 tập 1 yêu cầu chúng ta khảo sát hàm số và tìm các điểm cực trị. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các kiến thức về đạo hàm, điều kiện cực trị và cách xác định khoảng đồng biến, nghịch biến của hàm số.
(Đề bài cụ thể của bài tập 2.7 sẽ được chèn vào đây. Ví dụ: Cho hàm số y = x3 - 3x2 + 2. Khảo sát hàm số và tìm các điểm cực trị.)
(Lời giải chi tiết của bài tập 2.7 sẽ được trình bày ở đây, bao gồm các bước tính toán, giải thích rõ ràng và kết luận.)
Ví dụ, nếu đề bài là: Cho hàm số y = x3 - 3x2 + 2. Khảo sát hàm số và tìm các điểm cực trị.
Để củng cố kiến thức, các em có thể tự giải các bài tập tương tự trong SGK Toán 12 tập 1 hoặc các đề thi thử Toán 12.
Tusach.vn hy vọng với lời giải chi tiết này, các em sẽ hiểu rõ hơn về cách giải bài tập khảo sát hàm số và tự tin hơn trong các kỳ thi sắp tới. Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập