Chào mừng các em học sinh đến với lời giải chi tiết bài tập 4.9 trang 10 SGK Toán 12 tập 2. Bài tập này thuộc chương trình học về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
tusach.vn sẽ giúp các em hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự một cách hiệu quả.
Một chiếc cốc chứa nước ở 95°C được đặt trong phòng có nhiệt độ 20°C. Theo định luật làm mát của Newton, nhiệt độ của nước trong cốc sau t phút (xem (t = 0) là thời điểm nước ở 95°C) là một hàm số (T(t)). Tốc độ giảm nhiệt độ của nước trong cốc tại thời điểm t phút được xác định bởi (T'(t) = - frac{3}{2}{e^{ - frac{t}{{50}}}})(°C/phút). Tính nhiệt độ của nước tại thời điểm (t = 30) phút.
Đề bài
Một chiếc cốc chứa nước ở 95°C được đặt trong phòng có nhiệt độ 20°C. Theo định luật làm mát của Newton, nhiệt độ của nước trong cốc sau t phút (xem \(t = 0\) là thời điểm nước ở 95°C) là một hàm số \(T(t)\). Tốc độ giảm nhiệt độ của nước trong cốc tại thời điểm t phút được xác định bởi \(T'(t) = - \frac{3}{2}{e^{ - \frac{t}{{50}}}}\)(°C/phút). Tính nhiệt độ của nước tại thời điểm \(t = 30\) phút.
Phương pháp giải - Xem chi tiết
Để tính nhiệt độ của nước tại thời điểm \(t = 30\) phút, ta làm như sau:
- Tìm hàm nhiệt độ \(T(t)\) dựa vào hàm \(T'(t) = - \frac{3}{2}{e^{ - \frac{t}{{50}}}}\) bằng cách áp dụng công thức nguyên hàm của hàm số mũ \(\int {{a^x}dx} = \frac{{{a^x}}}{{\ln a}} + C\).
- Xác định C từ điều kiện \(T(0) = 95\).
- Thay \(t = 30\) vào \(T(t)\) và tính nhiệt độ.
Lời giải chi tiết
Ta biết rằng tốc độ giảm nhiệt độ của nước trong cốc tại thời điểm \(t\) phút được cho bởi:
\(T'(t) = - \frac{3}{2}{e^{ - \frac{t}{{50}}}}\).
Để tìm hàm số \(T(t)\), ta sẽ tích phân hàm \(T'(t)\):
\(\int {\left( { - \frac{3}{2}{e^{ - \frac{t}{{50}}}}} \right)dt} = - \frac{3}{2}\int {\left( {{e^{ - \frac{1}{{50}}.t}}} \right)dt} = - \frac{3}{2}\int {{{\left( {{e^{ - \frac{1}{{50}}}}} \right)}^t}dt} \)
\( = - \frac{3}{2}.\frac{{\left( {{e^{ - \frac{1}{{50}}}}} \right)t}}{{\ln \left( {{e^{ - \frac{1}{{50}}}}} \right)}} + C = - \frac{3}{2}.\frac{{\left( {{e^{ - \frac{1}{{50}}}}} \right)t}}{{^{ - \frac{1}{{50}}}}} + C = 75{e^{ - \frac{t}{{50}}}} + C\).
Vậy hàm số \(T(t)\) có dạng:
\(T(t) = 75{e^{ - \frac{t}{{50}}}} + C\).
Theo đề bài khi \(t = 0\) phút, nhiệt độ của nước là 95°C:
\(T(0) = 95\)
\(95 = 75{e^0} + C\)
\(95 = 75 + C\)
\(C = 20\).
Vậy hàm số \(T(t)\) là:
\(T(t) = 75{e^{ - \frac{t}{{50}}}} + 20\).
Thay \(t = 30\) vào hàm số \(T(t)\):
\(T(30) = 75{e^{ - \frac{{30}}{{50}}}} + 20 = 75{e^{ - \frac{3}{5}}} + 20 \approx 61,16\).
Vậy nhiệt độ của nước trong cốc tại thời điểm \(t = 30\) phút là khoảng \(61,16^\circ C\).
Bài tập 4.9 trang 10 SGK Toán 12 tập 2 yêu cầu chúng ta khảo sát hàm số và tìm các điểm cực trị. Để giải bài tập này, chúng ta cần nắm vững kiến thức về đạo hàm, điều kiện cực trị và cách xác định khoảng đồng biến, nghịch biến của hàm số.
Cho hàm số y = x3 - 3x2 + 2. Hãy khảo sát hàm số và tìm các điểm cực trị.
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| y' | + | - | + | |
| y | NB | ĐB | NB |
Hàm số y = x3 - 3x2 + 2 đạt cực đại tại điểm (0; 2) và đạt cực tiểu tại điểm (2; -2). Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2).
Để hiểu sâu hơn về cách khảo sát hàm số và tìm cực trị, các em có thể làm thêm các bài tập tương tự trong SGK Toán 12 tập 2. Hãy chú ý đến việc tính đạo hàm đúng và xét dấu đạo hàm một cách cẩn thận để đưa ra kết luận chính xác.
Lưu ý: Việc nắm vững các khái niệm và công thức về đạo hàm là rất quan trọng để giải quyết các bài tập về khảo sát hàm số. Hãy ôn tập lại lý thuyết trước khi bắt tay vào giải bài tập.
Hy vọng lời giải chi tiết này sẽ giúp các em hiểu rõ hơn về bài tập 4.9 trang 10 SGK Toán 12 tập 2. Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập