1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài tập 4.9 trang 10 SGK Toán 12 tập 2 - Cùng khám phá

Giải bài tập 4.9 trang 10 SGK Toán 12 tập 2 - Cùng khám phá

Giải Bài Tập 4.9 Trang 10 Toán 12 Tập 2

Chào mừng các em học sinh đến với lời giải chi tiết bài tập 4.9 trang 10 SGK Toán 12 tập 2. Bài tập này thuộc chương trình học về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.

tusach.vn sẽ giúp các em hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự một cách hiệu quả.

Một chiếc cốc chứa nước ở 95°C được đặt trong phòng có nhiệt độ 20°C. Theo định luật làm mát của Newton, nhiệt độ của nước trong cốc sau t phút (xem (t = 0) là thời điểm nước ở 95°C) là một hàm số (T(t)). Tốc độ giảm nhiệt độ của nước trong cốc tại thời điểm t phút được xác định bởi (T'(t) = - frac{3}{2}{e^{ - frac{t}{{50}}}})(°C/phút). Tính nhiệt độ của nước tại thời điểm (t = 30) phút.

Đề bài

Một chiếc cốc chứa nước ở 95°C được đặt trong phòng có nhiệt độ 20°C. Theo định luật làm mát của Newton, nhiệt độ của nước trong cốc sau t phút (xem \(t = 0\) là thời điểm nước ở 95°C) là một hàm số \(T(t)\). Tốc độ giảm nhiệt độ của nước trong cốc tại thời điểm t phút được xác định bởi \(T'(t) = - \frac{3}{2}{e^{ - \frac{t}{{50}}}}\)(°C/phút). Tính nhiệt độ của nước tại thời điểm \(t = 30\) phút.

Phương pháp giải - Xem chi tiếtGiải bài tập 4.9 trang 10 SGK Toán 12 tập 2 - Cùng khám phá 1

Để tính nhiệt độ của nước tại thời điểm \(t = 30\) phút, ta làm như sau:

- Tìm hàm nhiệt độ \(T(t)\) dựa vào hàm \(T'(t) = - \frac{3}{2}{e^{ - \frac{t}{{50}}}}\) bằng cách áp dụng công thức nguyên hàm của hàm số mũ \(\int {{a^x}dx} = \frac{{{a^x}}}{{\ln a}} + C\).

- Xác định C từ điều kiện \(T(0) = 95\).

- Thay \(t = 30\) vào \(T(t)\) và tính nhiệt độ.

Lời giải chi tiết

Ta biết rằng tốc độ giảm nhiệt độ của nước trong cốc tại thời điểm \(t\) phút được cho bởi:

\(T'(t) = - \frac{3}{2}{e^{ - \frac{t}{{50}}}}\).

Để tìm hàm số \(T(t)\), ta sẽ tích phân hàm \(T'(t)\):

\(\int {\left( { - \frac{3}{2}{e^{ - \frac{t}{{50}}}}} \right)dt} = - \frac{3}{2}\int {\left( {{e^{ - \frac{1}{{50}}.t}}} \right)dt} = - \frac{3}{2}\int {{{\left( {{e^{ - \frac{1}{{50}}}}} \right)}^t}dt} \)

\( = - \frac{3}{2}.\frac{{\left( {{e^{ - \frac{1}{{50}}}}} \right)t}}{{\ln \left( {{e^{ - \frac{1}{{50}}}}} \right)}} + C = - \frac{3}{2}.\frac{{\left( {{e^{ - \frac{1}{{50}}}}} \right)t}}{{^{ - \frac{1}{{50}}}}} + C = 75{e^{ - \frac{t}{{50}}}} + C\).

Vậy hàm số \(T(t)\) có dạng:

\(T(t) = 75{e^{ - \frac{t}{{50}}}} + C\).

Theo đề bài khi \(t = 0\) phút, nhiệt độ của nước là 95°C:

\(T(0) = 95\)

\(95 = 75{e^0} + C\)

\(95 = 75 + C\)

\(C = 20\).

Vậy hàm số \(T(t)\) là:

\(T(t) = 75{e^{ - \frac{t}{{50}}}} + 20\).

Thay \(t = 30\) vào hàm số \(T(t)\):

\(T(30) = 75{e^{ - \frac{{30}}{{50}}}} + 20 = 75{e^{ - \frac{3}{5}}} + 20 \approx 61,16\).

Vậy nhiệt độ của nước trong cốc tại thời điểm \(t = 30\) phút là khoảng \(61,16^\circ C\).

Giải Bài Tập 4.9 Trang 10 Toán 12 Tập 2: Chi Tiết và Dễ Hiểu

Bài tập 4.9 trang 10 SGK Toán 12 tập 2 yêu cầu chúng ta khảo sát hàm số và tìm các điểm cực trị. Để giải bài tập này, chúng ta cần nắm vững kiến thức về đạo hàm, điều kiện cực trị và cách xác định khoảng đồng biến, nghịch biến của hàm số.

Đề Bài Bài Tập 4.9

Cho hàm số y = x3 - 3x2 + 2. Hãy khảo sát hàm số và tìm các điểm cực trị.

Lời Giải Chi Tiết

  1. Xác định tập xác định của hàm số: Hàm số y = x3 - 3x2 + 2 là một hàm đa thức nên tập xác định của hàm số là D = ℝ.
  2. Tính đạo hàm cấp nhất: y' = 3x2 - 6x
  3. Tìm điểm dừng: Giải phương trình y' = 0, ta được: 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0 ⇔ x = 0 hoặc x = 2. Vậy, các điểm dừng của hàm số là x1 = 0 và x2 = 2.
  4. Lập bảng xét dấu đạo hàm cấp nhất:
    x-∞02+∞
    y'+-+
    yNBĐBNB
    (NB: Đồng biến, ĐB: Nghịch biến)
  5. Kết luận về khoảng đồng biến, nghịch biến:
    • Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞).
    • Hàm số nghịch biến trên khoảng (0; 2).
  6. Tìm cực trị:
    • Tại x = 0, y' đổi dấu từ dương sang âm, nên hàm số đạt cực đại tại x = 0. Giá trị cực đại là y = 03 - 3(0)2 + 2 = 2.
    • Tại x = 2, y' đổi dấu từ âm sang dương, nên hàm số đạt cực tiểu tại x = 2. Giá trị cực tiểu là yCT = 23 - 3(2)2 + 2 = 8 - 12 + 2 = -2.

Kết Luận

Hàm số y = x3 - 3x2 + 2 đạt cực đại tại điểm (0; 2) và đạt cực tiểu tại điểm (2; -2). Hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2).

Mở Rộng và Bài Tập Tương Tự

Để hiểu sâu hơn về cách khảo sát hàm số và tìm cực trị, các em có thể làm thêm các bài tập tương tự trong SGK Toán 12 tập 2. Hãy chú ý đến việc tính đạo hàm đúng và xét dấu đạo hàm một cách cẩn thận để đưa ra kết luận chính xác.

Lưu ý: Việc nắm vững các khái niệm và công thức về đạo hàm là rất quan trọng để giải quyết các bài tập về khảo sát hàm số. Hãy ôn tập lại lý thuyết trước khi bắt tay vào giải bài tập.

Hy vọng lời giải chi tiết này sẽ giúp các em hiểu rõ hơn về bài tập 4.9 trang 10 SGK Toán 12 tập 2. Chúc các em học tập tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN