Chào mừng các em học sinh đến với lời giải chi tiết bài tập 2.16 trang 73 SGK Toán 12 tập 1. Bài tập này thuộc chương trình học về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp những lời giải chính xác, dễ hiểu và đầy đủ nhất.
Một vật ở trạng thái cân bằng khi hợp của tất cả các lực tác dụng lên vật được biểu diễn bằng vectơ-không. Trong không gian \(Oxyz\), biết rằng đang có ba lực biểu thị bởi ba vectơ \({\vec F_1} = (9;7;2)\), \({\vec F_2} = (1;5;10)\) và \({\vec F_3} = (9; - 2; - 7)\) tác dụng lên một vật. Hãy tìm toạ độ của vectơ biểu thị lực \({\vec F_4}\) để khi tác dụng thêm lực này vào vật thì vật ở trạng thái cân bằng.
Đề bài
Một vật ở trạng thái cân bằng khi hợp của tất cả các lực tác dụng lên vật được biểu diễn bằng vectơ-không.
Trong không gian \(Oxyz\), biết rằng đang có ba lực biểu thị bởi ba vectơ \({\vec F_1} = (9;7;2)\), \({\vec F_2} = (1;5;10)\) và \({\vec F_3} = (9; - 2; - 7)\) tác dụng lên một vật. Hãy tìm toạ độ của vectơ biểu thị lực \({\vec F_4}\) để khi tác dụng thêm lực này vào vật thì vật ở trạng thái cân bằng.
Phương pháp giải - Xem chi tiết
Để một vật ở trạng thái cân bằng, tổng các lực tác dụng lên vật phải bằng vectơ không, tức là:
\({\vec F_1} + {\vec F_2} + {\vec F_3} + {\vec F_4} = \vec 0\)
Trong đó, \({\vec F_1},{\vec F_2},{\vec F_3}\) là các lực đã biết và \({\vec F_4}\) là lực cần tìm. Để tìm tọa độ của vectơ \({\vec F_4}\), ta có thể sử dụng phương trình sau:
\({\vec F_4} = - \left( {{{\vec F}_1} + {{\vec F}_2} + {{\vec F}_3}} \right)\)
Lời giải chi tiết
Tọa độ của các vectơ lực đã biết là:
\({\vec F_1} = (9,7,2),\quad {\vec F_2} = (1,5,10),\quad {\vec F_3} = (9, - 2, - 7)\)
Tổng của các vectơ lực \({\vec F_1},{\vec F_2}\), và \({\vec F_3}\) là:
\({\vec F_1} + {\vec F_2} + {\vec F_3} = (9 + 1 + 9,7 + 5 - 2,2 + 10 - 7) = (19,10,5)\)
Do đó, để vật ở trạng thái cân bằng, vectơ lực \({\vec F_4}\) cần phải thỏa mãn:
\({\vec F_4} = - {\vec F_{hl}} = - (19,10,5) = ( - 19, - 10, - 5)\)
Bài tập 2.16 trang 73 SGK Toán 12 tập 1 yêu cầu chúng ta khảo sát hàm số và tìm các điểm cực trị. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các kiến thức về đạo hàm, điều kiện cực trị và cách xác định khoảng đồng biến, nghịch biến của hàm số.
Cho hàm số y = f(x) = x3 - 3x2 + 2. Hãy:
Bước 1: Tìm tập xác định của hàm số
Hàm số y = x3 - 3x2 + 2 là một hàm đa thức, do đó tập xác định của hàm số là D = ℝ.
Bước 2: Tính đạo hàm cấp nhất
f'(x) = 3x2 - 6x
Bước 3: Tìm các điểm cực trị
Để tìm các điểm cực trị, ta giải phương trình f'(x) = 0:
3x2 - 6x = 0
3x(x - 2) = 0
Vậy, x = 0 hoặc x = 2.
Bước 4: Xác định loại điểm cực trị
Ta xét dấu của f'(x) trên các khoảng:
Vậy, hàm số đạt cực đại tại x = 0 và cực tiểu tại x = 2.
Bước 5: Tính giá trị của hàm số tại các điểm cực trị
f(0) = 03 - 3(0)2 + 2 = 2
f(2) = 23 - 3(2)2 + 2 = 8 - 12 + 2 = -2
Vậy, điểm cực đại là (0; 2) và điểm cực tiểu là (2; -2).
Dựa vào bảng xét dấu của f'(x), ta có:
Thông qua việc giải bài tập 2.16 trang 73 SGK Toán 12 tập 1, chúng ta đã nắm vững phương pháp khảo sát hàm số bằng đạo hàm, tìm các điểm cực trị và xác định khoảng đồng biến, nghịch biến của hàm số. Đây là những kiến thức quan trọng trong chương trình Toán 12 và có ứng dụng rộng rãi trong nhiều lĩnh vực khác.
Hy vọng lời giải chi tiết này sẽ giúp các em hiểu rõ hơn về bài tập và tự tin hơn trong quá trình học tập. Nếu có bất kỳ thắc mắc nào, đừng ngần ngại đặt câu hỏi trong phần bình luận bên dưới. Tusach.vn luôn sẵn sàng hỗ trợ các em!
| Điểm | Giá trị |
|---|---|
| Cực đại | (0; 2) |
| Cực tiểu | (2; -2) |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập