1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài tập 3.9 trang 103 SGK Toán 12 tập 1 - Cùng khám phá

Giải bài tập 3.9 trang 103 SGK Toán 12 tập 1 - Cùng khám phá

Giải Bài Tập 3.9 Trang 103 SGK Toán 12 Tập 1

Chào mừng các em học sinh đến với lời giải chi tiết bài tập 3.9 trang 103 SGK Toán 12 tập 1. Bài tập này thuộc chương trình học về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.

Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp những lời giải chính xác, dễ hiểu và đầy đủ nhất.

Bạn Mai dự định đăng kí xét tuyển vào đại học các ngành khối A00 (thi Toán, Vật lí, Hoá học) và A01 (thi Toán, Vật lí, Tiếng Anh). Bạn tìm hiểu điểm chuẩn năm trước của một số trường đóng trên những địa bàn không quá xa nơi gia đình mình sinh sống. Thông tin bạn thu được là:

Đề bài

Bạn Mai dự định đăng kí xét tuyển vào đại học các ngành khối A00 (thi Toán, Vật lí, Hoá học) và A01 (thi Toán, Vật lí, Tiếng Anh). Bạn tìm hiểu điểm chuẩn năm trước của một số trường đóng trên những địa bàn không quá xa nơi gia đình mình sinh sống. Thông tin bạn thu được là:

Giải bài tập 3.9 trang 103 SGK Toán 12 tập 1 - Cùng khám phá 1

a) Lập mẫu số liệu ghép nhóm cho hai mẫu số liệu bạn Mai thu thập được, với độ dài các nhóm ghép là 1 và nhóm đầu tiên là [19; 20).

b) Những trường mà bạn Mai tìm hiểu có điểm chuẩn khối nào ổn định hơn?

Phương pháp giải - Xem chi tiếtGiải bài tập 3.9 trang 103 SGK Toán 12 tập 1 - Cùng khám phá 2

a) Lập bảng với các nhóm ghép bắt đầu từ [19; 20), [20; 21), ….

b) Áp dụng các công thức sau để tính độ lệch chuẩn điểm chuẩn của hai khối. Khối nào có độ lệch chuẩn thấp hơn thì điểm chuẩn khối đó ổn định hơn

- Công thức tính trung bình:

\(\bar x = \frac{{\sum\limits_{i = 1}^k {\left( {{x_i}{f_i}} \right)} }}{N}\)

- Công thức tính độ lệch chuẩn:

\(S = \sqrt {\overline {{x^2}} - {{\left( {\bar x} \right)}^2}} = \sqrt {\frac{{\sum {{f_i}x_i^2} }}{N} - {{\left( {\bar x} \right)}^2}} \)

Lời giải chi tiết

a) Theo đề bài, ta có N = 20.

Khối A00:

Giải bài tập 3.9 trang 103 SGK Toán 12 tập 1 - Cùng khám phá 3

Khối A01:

Giải bài tập 3.9 trang 103 SGK Toán 12 tập 1 - Cùng khám phá 4

b)

Điểm chuẩn trung bình của hai khối là:

\(\overline {{x_{A00}}} = \frac{{19,5.2 + 20,5.5 + 21,5.8 + 22,5.3 + 23,5.2}}{{20}} = 21,4\)

\(\overline {{x_{A01}}} = \frac{{19,5.4 + 20,5.3 + 21,5.5 + 22,5.5 + 23,5.3}}{{20}} = 21,5\)

Tính \(\overline {x_{A00}^2} ,\overline {x_{A01}^2} \):

\(\overline {x_{A00}^2} = \frac{{\sum {{f_i}x_i^2} }}{N} = \frac{{19,{5^2}.2 + 20,{5^2}.5 + 21,{5^2}.8 + 22,{5^2}.3 + 23,{5^2}.2}}{{20}} = 459,15\)

\(\overline {x_{A01}^2} = \frac{{\sum {{f_i}x_i^2} }}{N} = \frac{{19,{5^2}.4 + 20,{5^2}.3 + 21,{5^2}.5 + 22,{5^2}.5 + 23,{5^2}.3}}{{20}} = 464,05\)

Độ lệch chuẩn của hai khối là:

\({S_{A00}} = \sqrt {\overline {x_{A00}^2} - {{\left( {\overline {{x_{A00}}} } \right)}^2}} = \sqrt {459,15 - 21,{4^2}} \approx 1,091\)

\({S_{A01}} = \sqrt {\overline {x_{A01}^2} - {{\left( {\overline {{x_{A01}}} } \right)}^2}} = \sqrt {464,05 - 21,{5^2}} \approx 1,342\)

Khối A00 có độ lệch chuẩn thấp hơn, nghĩa là điểm chuẩn khối A00 ổn định hơn so với khối A01.

Giải Bài Tập 3.9 Trang 103 SGK Toán 12 Tập 1: Chi Tiết và Dễ Hiểu

Bài tập 3.9 trang 103 SGK Toán 12 tập 1 yêu cầu chúng ta khảo sát hàm số và tìm cực trị. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các bước sau:

  1. Xác định tập xác định của hàm số: Tìm khoảng mà hàm số có nghĩa.
  2. Tính đạo hàm bậc nhất: Tính f'(x) để tìm các điểm dừng (điểm mà f'(x) = 0 hoặc không xác định).
  3. Lập bảng biến thiên: Xác định dấu của f'(x) trên các khoảng xác định để xác định khoảng đồng biến, nghịch biến.
  4. Tìm cực trị: Sử dụng dấu của f'(x) để xác định điểm cực đại, cực tiểu.
  5. Khảo sát giới hạn và tiệm cận: Xác định giới hạn của hàm số khi x tiến tới vô cùng và các điểm không xác định.
  6. Vẽ đồ thị hàm số: Dựa trên các thông tin đã thu thập để vẽ đồ thị hàm số.

Lời Giải Chi Tiết Bài Tập 3.9

Để minh họa, chúng ta sẽ xét một ví dụ cụ thể. Giả sử hàm số cần khảo sát là: f(x) = x3 - 3x2 + 2.

  1. Tập xác định: D = ℝ
  2. Đạo hàm bậc nhất: f'(x) = 3x2 - 6x
  3. Điểm dừng: f'(x) = 0 ⇔ 3x2 - 6x = 0 ⇔ x = 0 hoặc x = 2
  4. Bảng biến thiên:
    x-∞02+∞
    f'(x)+-+
    f(x)
  5. Cực trị:
    • Điểm cực đại: x = 0, f(0) = 2
    • Điểm cực tiểu: x = 2, f(2) = -2

Lưu Ý Quan Trọng

Khi giải các bài tập về khảo sát hàm số, cần chú ý:

  • Kiểm tra kỹ tập xác định của hàm số.
  • Tính đạo hàm chính xác.
  • Lập bảng biến thiên cẩn thận để tránh sai sót.
  • Kết hợp các thông tin đã thu thập để vẽ đồ thị hàm số một cách chính xác.

Tusach.vn – Đồng Hành Cùng Bạn Học Toán 12

Tusach.vn hy vọng rằng lời giải chi tiết này sẽ giúp các em hiểu rõ hơn về cách giải bài tập 3.9 trang 103 SGK Toán 12 tập 1. Hãy truy cập Tusach.vn để tìm thêm nhiều bài giải Toán 12 và các tài liệu học tập hữu ích khác. Chúc các em học tập tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN