Bài tập 1.7 trang 9 SGK Toán 12 tập 1 là một bài tập quan trọng trong chương trình học. Bài tập này giúp học sinh rèn luyện kỹ năng về giới hạn của hàm số.
tusach.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập này, giúp các em học sinh nắm vững kiến thức và tự tin làm bài.
Thể tích \(V\) của 1 kg nước (tính bằng cm3¬) ở nhiệt độ \(T\) (đơn vị: oC) khi \(T\) thay đổi từ 0oC đến 30oC được cho xấp xỉ bởi công thức: \(V = 999,87 - 0.06426T + 0,0085043{T^2} - 0,0000769{T^3}\) (Nguồn: James Stewart,J(2015).Calculus.Cengage Learning 8th edition, p.284) Tìm nhiệt độ \({T_0} \in (0;30)\) kể từ nhiệt độ \({T_0}\) trở lên thì thể tích tăng( làm tròn kết quả đến hàng đơn vị
Đề bài
Thể tích \(V\) của 1 kg nước (tính bằng cm3) ở nhiệt độ \(T\) (đơn vị: oC) khi \(T\) thay đổi từ 0oC đến 30oC được cho xấp xỉ bởi công thức:
\(V = 999,87 - 0.06426T + 0,0085043{T^2} - 0,0000769{T^3}\)
(Nguồn: James Stewart,J(2015).Calculus.Cengage Learning 8th edition, p.284)
Tìm nhiệt độ \({T_0} \in (0;30)\) kể từ nhiệt độ \({T_0}\) trở lên thì thể tích tăng( làm tròn kết quả đến hàng đơn vị
Phương pháp giải - Xem chi tiết
Nhiệt độ \({T_0} \in (0;30)\) kể từ nhiệt độ \({T_0}\) trở lên thì thể tích tăng là tìm khoảng dông biến của hàm số \(V = 999,87 - 0.06426T + 0,0085043{T^2} - 0,0000769{T^3}\)
Bước 1: Tính
Bước 2: Lập bảng biến thiên
Bước 3: Xác định khoảng dông biến của hàm số dựa vào bảng biến thiên
Lời giải chi tiết
Ta có: \(V' = - 0,06426 + 2.0,0085043T - 3.0,0000769{T^2}\)
Xét \(V' = 0\)\( \Rightarrow - 0,06426 + 2.0,0085043T - 3.0,0000769{T^2} = 0\)
\( \Rightarrow \left[ \begin{array}{l}T = 69\\T = 4\end{array} \right.\)
Từ đó ta có bảng biến thiên là

Từ bảng biến thiên ta thấy
Hàm số trên đồng biến từ \({T_0} = 4\)hay thể tích nước tăng từ khi \({T_0} = 4\)
Bài tập 1.7 trang 9 SGK Toán 12 tập 1 yêu cầu tính giới hạn của hàm số. Để giải bài tập này, chúng ta cần nắm vững các định nghĩa và tính chất của giới hạn hàm số, đặc biệt là giới hạn của hàm đa thức và hàm hữu tỉ.
Bài tập 1.7 thường có dạng:
Để giải bài tập này, chúng ta có thể sử dụng các phương pháp sau:
Ví dụ 1: Tính lim (x→2) (x2 - 4) / (x - 2)
Giải:
Ta có: (x2 - 4) / (x - 2) = (x - 2)(x + 2) / (x - 2) = x + 2 (với x ≠ 2)
Vậy, lim (x→2) (x2 - 4) / (x - 2) = lim (x→2) (x + 2) = 2 + 2 = 4
Ví dụ 2: Tính lim (x→-1) (x3 + 1) / (x + 1)
Giải:
Ta có: (x3 + 1) / (x + 1) = (x + 1)(x2 - x + 1) / (x + 1) = x2 - x + 1 (với x ≠ -1)
Vậy, lim (x→-1) (x3 + 1) / (x + 1) = lim (x→-1) (x2 - x + 1) = (-1)2 - (-1) + 1 = 1 + 1 + 1 = 3
Ví dụ 3: Tính lim (x→0) (sin x) / x
Giải:
Đây là một giới hạn đặc biệt. Ta có: lim (x→0) (sin x) / x = 1
Bài tập 1.7 trang 9 SGK Toán 12 tập 1 là một bài tập cơ bản về giới hạn hàm số. Việc nắm vững các kiến thức và phương pháp giải bài tập này sẽ giúp các em học sinh tự tin hơn trong việc giải các bài tập phức tạp hơn về giới hạn.
Hy vọng với lời giải chi tiết và hướng dẫn cụ thể trên, các em học sinh đã hiểu rõ cách giải bài tập 1.7 trang 9 SGK Toán 12 tập 1. Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập