Bài tập 2.18 trang 79 SGK Toán 12 tập 1 là một bài toán quan trọng trong chương trình học giải tích lớp 12. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế.
Tusach.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập này, giúp các em học sinh hiểu rõ bản chất và phương pháp giải.
Trong không gian Oxyz, cho tam giác ABC. Biết tọa độ các đỉnh là \(A(0;1;1)\), \(B(0;1;2)\), \(C( - 1;1;1)\). a) Tính độ dài các cạnh của tam giác. b) Tính \(\widehat {ABC}\).
Đề bài
Trong không gian Oxyz, cho tam giác ABC. Biết tọa độ các đỉnh là \(A(0;1;1)\), \(B(0;1;2)\), \(C( - 1;1;1)\).
a) Tính độ dài các cạnh của tam giác.
b) Tính \(\widehat {ABC}\).
Phương pháp giải - Xem chi tiết
a) Độ dài các cạnh được tính bằng công thức:
\(AB = \sqrt {{{({x_B} - {x_A})}^2} + {{({y_B} - {y_A})}^2} + {{({z_B} - {z_A})}^2}} \)
b) Sử dụng công thức tích vô hướng để tính góc giữa hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {BC} \):
\(\cos \theta = \frac{{\overrightarrow {AB} \cdot \overrightarrow {BC} }}{{\left| {\overrightarrow {AB} } \right|\left| {\overrightarrow {BC} } \right|}}\)
Lời giải chi tiết
a) Độ dài các cạnh:
\(AB = \sqrt {{{(0 - 0)}^2} + {{(1 - 1)}^2} + {{(2 - 1)}^2}} = \sqrt 1 = 1\)
\(BC = \sqrt {{{(0 - ( - 1))}^2} + {{(1 - 1)}^2} + {{(2 - 1)}^2}} = \sqrt {1 + 1} = \sqrt 2 \)
\(CA = \sqrt {{{(0 - ( - 1))}^2} + {{(1 - 1)}^2} + {{(1 - 1)}^2}} = \sqrt 1 = 1\)
b) Tích vô hướng và độ lớn:
\(\overrightarrow {AB} \cdot \overrightarrow {BC} = (0;0;1) \cdot ( - 1;0; - 1) = 0 \times ( - 1) + 0 \times 0 + 1 \times ( - 1) = - 1\)
\(\left| {\overrightarrow {AB} } \right| = 1,\quad \left| {\overrightarrow {BC} } \right| = \sqrt 2 \)
\(\cos \theta = \frac{{ - 1}}{{\sqrt 2 }}\quad \Rightarrow \quad \theta = {135^\circ }\)
Bài tập 2.18 trang 79 SGK Toán 12 tập 1 thuộc chương trình Giải tích, cụ thể là phần về đạo hàm của hàm số. Bài toán này thường yêu cầu học sinh phải nắm vững các quy tắc tính đạo hàm, đặc biệt là đạo hàm của tổng, hiệu, tích, thương và đạo hàm hàm hợp. Việc hiểu rõ bản chất của đạo hàm cũng rất quan trọng để áp dụng vào giải quyết các bài toán thực tế.
Thông thường, bài tập 2.18 sẽ yêu cầu tính đạo hàm của một hàm số phức tạp, hoặc tìm điều kiện để hàm số có đạo hàm tại một điểm. Đôi khi, bài toán còn yêu cầu sử dụng đạo hàm để giải quyết các bài toán liên quan đến cực trị, khoảng đơn điệu của hàm số.
Để giải bài tập này, chúng ta cần thực hiện các bước sau:
Ví dụ minh họa:
Giả sử bài tập yêu cầu tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.
Lời giải:
f'(x) = 3x2 + 4x - 5
Tusach.vn là một website cung cấp đầy đủ các tài liệu học tập Toán 12, bao gồm SGK, SBT, đề thi, bài giải và các bài viết hướng dẫn giải bài tập chi tiết. Chúng tôi luôn cập nhật những thông tin mới nhất và đảm bảo chất lượng của các tài liệu. Hãy truy cập Tusach.vn để học tập và ôn luyện Toán 12 hiệu quả!
Hy vọng với lời giải chi tiết và những chia sẻ trên, các em học sinh sẽ tự tin hơn khi giải bài tập 2.18 trang 79 SGK Toán 12 tập 1 và các bài tập tương tự. Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập