1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài tập 5.29 trang 71 SGK Toán 12 tập 2 - Cùng khám phá

Giải bài tập 5.29 trang 71 SGK Toán 12 tập 2 - Cùng khám phá

Giải Bài Tập 5.29 Trang 71 Toán 12 Tập 2

Bài tập 5.29 trang 71 SGK Toán 12 tập 2 là một bài toán quan trọng trong chương trình học. Bài toán này thường liên quan đến việc ứng dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.

Tusach.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập này, giúp các em học sinh hiểu rõ bản chất và phương pháp giải.

Một khuôn nướng bánh mì được mô phỏng trong không gian Oxyz như Hình 5.30 với các điểm sau: \(S(0;0;0)\), \(P(8;0;0)\), \(Q(8;18;0)\), \(T( - 1; - 1;7)\), \(R(9;19;7)\). Tính góc giữa hai cạnh kề nhau, giữa cạnh bên và mặt đáy, giữa mặt bên và mặt đáy của khuôn.

Đề bài

Một khuôn nướng bánh mì được mô phỏng trong không gian Oxyz như Hình 5.30 với các điểm sau: \(S(0;0;0)\), \(P(8;0;0)\), \(Q(8;18;0)\), \(T( - 1; - 1;7)\), \(R(9;19;7)\). Tính góc giữa hai cạnh kề nhau, giữa cạnh bên và mặt đáy, giữa mặt bên và mặt đáy của khuôn.

Giải bài tập 5.29 trang 71 SGK Toán 12 tập 2 - Cùng khám phá 1

Phương pháp giải - Xem chi tiếtGiải bài tập 5.29 trang 71 SGK Toán 12 tập 2 - Cùng khám phá 2

1. Tính góc giữa hai cạnh kề

- Xác định vectơ chỉ phương của hai cạnh:

- Sử dụng công thức tính góc giữa hai vectơ:

\(\cos \theta = \frac{{\vec u \cdot \vec v}}{{|\vec u||\vec v|}}\)

2. Tính góc giữa cạnh bên và mặt đáy:

- Xác định các vectơ chỉ phương của cạnh bên và mặt đáy.

- Sử dụng công thức tính góc giữa hai vectơ:

\(\cos \theta = \frac{{\vec u \cdot \vec v}}{{|\vec u||\vec v|}}\)

3. Tính góc giữa mặt bên và mặt đáy:

- Tính vectơ pháp tuyến của mặt bên và mặt đáy.

- Sử dụng công thức tính góc giữa hai mặt phẳng:

\(\cos \theta = \frac{{|\overrightarrow {{n_1}} \cdot \overrightarrow {{n_2}} |}}{{|\overrightarrow {{n_1}} ||\overrightarrow {{n_2}} |}}\)

Lời giải chi tiết

- Tính góc giữa hai cạnh kề nhau:

Ta có các vectơ chỉ phương sau:

\(\overrightarrow {SP} = P - S = (8 - 0;0 - 0;0 - 0) = (8;0;0)\)

\(\overrightarrow {SQ} = Q - S = (8 - 0;18 - 0;0 - 0) = (8;18;0)\)

\(\overrightarrow {ST} = T - S = ( - 1 - 0; - 1 - 0;7 - 0) = ( - 1; - 1;7)\)

\(\overrightarrow {SH} = \overrightarrow {PQ} = (0;18;0)\)

\(\overrightarrow {SE} = (9; - 1;7)\)

Góc giữa những cặp cạnh kề nhau:

\(\begin{array}{l}\cos (\overrightarrow {SP} ,\overrightarrow {ST} ) = \frac{{8.( - 1) + 0.( - 1) + 0.( - 7)}}{{\sqrt {{8^2}} .\sqrt {{{( - 1)}^2} + {{( - 1)}^2} + {{( - 7)}^2}} }} = \frac{{ - 8}}{{8.\sqrt {51} }} = \frac{{ - 1}}{{\sqrt {51} }} \Rightarrow (\overrightarrow {SP} ,\overrightarrow {ST} ) \approx {98^\circ }\\ \Leftrightarrow (\overrightarrow {PS} ,\overrightarrow {PE} ) = (\overrightarrow {HQ} ,\overrightarrow {HK} ) = (\overrightarrow {QH} ,\overrightarrow {QR} ) \approx {98^\circ }\end{array}\)

\(\begin{array}{l}\cos (\overrightarrow {EP} ,\overrightarrow {ER} ) = \frac{{( - 1).(0) + (1).(2) + ( - 7).(0)}}{{\sqrt {{{( - 1)}^2} + {1^2} + {{( - 7)}^2}} .\sqrt {{0^2} + {2^2} + {0^2}} }} = \frac{2}{{\sqrt {51} .2}} = \frac{1}{{\sqrt {51} }} \Rightarrow (\overrightarrow {EP} ,\overrightarrow {ER} ) \approx {82^\circ }\\ \Leftrightarrow (\overrightarrow {RE} ,\overrightarrow {RQ} ) = (\overrightarrow {TS} ,\overrightarrow {TK} ) = (\overrightarrow {KT} ,\overrightarrow {KH} ) \approx {82^\circ }\end{array}\)

\(\begin{array}{l}\cos (\overrightarrow {ET} ,\overrightarrow {EP} ) = \frac{{( - 10).( - 1) + (0).(1) + (0).( - 7)}}{{\sqrt {{{( - 10)}^2} + {0^2} + {0^2}} .\sqrt {{{( - 1)}^2} + {1^2} + {{( - 7)}^2}} }} = \frac{{10}}{{10.\sqrt {51} }} = \frac{1}{{\sqrt {51} }} \Rightarrow (\overrightarrow {ET} ,\overrightarrow {EP} ) \approx {82^\circ }\\ \Leftrightarrow (\overrightarrow {TE} ,\overrightarrow {TS} ) = (\overrightarrow {KH} ,\overrightarrow {KR} ) = (\overrightarrow {RK} ,\overrightarrow {RQ} ) \approx {82^\circ }\end{array}\)

\(\begin{array}{l}\cos (\overrightarrow {PE} ,\overrightarrow {PQ} ) = \frac{{(1).(0) + ( - 1).(18) + (7).(0)}}{{\sqrt {{1^2} + {{( - 1)}^2} + {7^2}} .\sqrt {{0^2} + {{18}^2} + {0^2}} }} = \frac{{ - 18}}{{\sqrt {51} .18}} = \frac{{ - 1}}{{\sqrt {51} }} \Rightarrow (\overrightarrow {PE} ,\overrightarrow {PQ} ) \approx {98^\circ }\\ \Leftrightarrow (\overrightarrow {QP} ,\overrightarrow {QR} ) = (ST,\overrightarrow {SH} ) = (\overrightarrow {HS} ,\overrightarrow {HK} ) \approx {98^\circ }\end{array}\)

\(\cos (\overrightarrow {SP} ,\overrightarrow {SH} ) = \frac{{8.(0) + 0.(18) + 0.(0)}}{{\sqrt {{8^2}} .\sqrt {{0^2} + {{18}^2} + {0^2}} }} = 0 \Rightarrow (\overrightarrow {SP} ,\overrightarrow {SH} ) = {90^\circ }\)

\(\cos (\overrightarrow {PS} ,\overrightarrow {PQ} ) = \frac{{( - 8).(0) + 0.(18) + 0.(0)}}{{\sqrt {{{( - 8)}^2}} .\sqrt {{0^2} + {{18}^2} + {0^2}} }} = 0 \Rightarrow (\overrightarrow {PS} ,\overrightarrow {PQ} ) = {90^\circ }\)

Các cặp cạnh còn lại có số đo góc là 90°

- Tính góc giữa cạnh bên và mặt đáy:

Chọn một cạnh bên là ST.

Vectơ pháp tuyến của mặt đáy SPQH là:

\(\vec n = \overrightarrow {SP} \times \overrightarrow {SQ} = (0.0 - 0.18;0.8 - 8.0;8.18 - 0.8) = (0;0;144)\)

\( \Rightarrow \theta = \arccos \left( {\frac{7}{{\sqrt {51} }}} \right)\)

- Tính góc giữa mặt bên và mặt đáy của khuôn.

Chọn mặt bên là STEP

Vectơ pháp tuyến của mặt phẳng STEP là:

\(\overrightarrow {{n_{STEP}}} = \overrightarrow {SP} .\overrightarrow {ST} = (0.7 - 0.( - 1);0.( - 1) - 8.7;8.( - 1) - 0.( - 1)) = (0; - 56; - 8)\)

Góc giữa mặt bên STEP và mặt đáy SPQH là:

\(\cos \theta = \frac{{\left| {0.0 + 0.( - 56) + 144.( - 8)} \right|}}{{\sqrt {{{144}^2}} .\sqrt {{{( - 56)}^2} + {{( - 8)}^2}} }} = \frac{{1208}}{{144.40\sqrt 2 }} = \frac{{151}}{{720\sqrt 2 }} \Rightarrow \theta \approx 81^\circ \)

Giải Bài Tập 5.29 Trang 71 SGK Toán 12 Tập 2: Hướng Dẫn Chi Tiết

Bài tập 5.29 trang 71 SGK Toán 12 tập 2 thường thuộc chủ đề về ứng dụng đạo hàm để khảo sát hàm số. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các kiến thức cơ bản về đạo hàm, cực trị, và điểm uốn của hàm số.

Phân Tích Đề Bài

Trước khi bắt đầu giải, hãy đọc kỹ đề bài và xác định rõ yêu cầu của bài toán. Thông thường, bài tập 5.29 sẽ yêu cầu chúng ta:

  • Tìm tập xác định của hàm số.
  • Tính đạo hàm bậc nhất và bậc hai của hàm số.
  • Xác định các điểm cực trị của hàm số.
  • Xác định khoảng đồng biến và nghịch biến của hàm số.
  • Tìm điểm uốn của hàm số.
  • Vẽ đồ thị hàm số.

Lời Giải Chi Tiết

Để minh họa, giả sử bài tập 5.29 có nội dung sau:

Cho hàm số y = x3 - 3x2 + 2. Hãy khảo sát hàm số và vẽ đồ thị.

  1. Tìm tập xác định: Hàm số y = x3 - 3x2 + 2 xác định trên tập số thực R.
  2. Tính đạo hàm:
    • y' = 3x2 - 6x
    • y'' = 6x - 6
  3. Tìm điểm cực trị:

    Giải phương trình y' = 0: 3x2 - 6x = 0 => x = 0 hoặc x = 2

    Xét dấu y':

    x-∞02+∞
    y'+-+
    Hàm sốĐồng biếnNghịch biếnĐồng biến

    Vậy hàm số đạt cực đại tại x = 0, y = 2 và đạt cực tiểu tại x = 2, yCT = -2.

  4. Tìm điểm uốn:

    Giải phương trình y'' = 0: 6x - 6 = 0 => x = 1

    Xét dấu y'':

    x-∞1+∞
    y''-+
    Đồ thịLõm xuốngLõm lên

    Vậy hàm số có điểm uốn tại x = 1, yU = 0.

  5. Vẽ đồ thị: Dựa vào các kết quả trên, ta có thể vẽ được đồ thị hàm số y = x3 - 3x2 + 2.

Lưu Ý Quan Trọng

Khi giải các bài tập về ứng dụng đạo hàm, cần chú ý:

  • Kiểm tra kỹ điều kiện xác định của hàm số.
  • Tính đạo hàm chính xác.
  • Xét dấu đạo hàm một cách cẩn thận để xác định khoảng đồng biến, nghịch biến và cực trị.
  • Sử dụng điểm uốn để vẽ đồ thị chính xác hơn.

Tusach.vn – Đồng Hành Cùng Bạn Học Toán

Tusach.vn luôn đồng hành cùng các bạn học sinh trong quá trình học tập. Chúng tôi cung cấp lời giải chi tiết, dễ hiểu cho tất cả các bài tập trong SGK Toán 12 tập 2. Hãy truy cập Tusach.vn để khám phá thêm nhiều kiến thức hữu ích và nâng cao kết quả học tập của bạn!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN