Chào mừng các em học sinh đến với lời giải chi tiết bài tập 2.5 trang 65 SGK Toán 12 tập 1. Bài tập này thuộc chương trình học về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp đáp án chính xác và phương pháp giải bài tập hiệu quả.
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi G, G' lần lượt là trọng tâm các tam giác ABC và A'B'C'. O là giao điểm của hai đường thẳng AB' và A'B. a) Chứng minh rằng các đường thẳng GO và CG' song song với nhau. b) Tính độ dài của \(\overrightarrow {GO} \)trong trường hợp ABC.A'B'C' là hình lăng trụ đứng, cạnh bên AA' = 3 và đáy là tam giác đều có cạnh bằng 2.
Đề bài
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi G, G' lần lượt là trọng tâm các tam giác ABC và A'B'C'. O là giao điểm của hai đường thẳng AB' và A'B.
a) Chứng minh rằng các đường thẳng GO và CG' song song với nhau.
b) Tính độ dài của \(\overrightarrow {GO} \)trong trường hợp ABC.A'B'C' là hình lăng trụ đứng, cạnh bên AA' = 3 và đáy là tam giác đều có cạnh bằng 2.
Phương pháp giải - Xem chi tiết
- Tìm k (k≠0) sao cho \(\overrightarrow {GO} = k\overrightarrow {CG'} \) thì hai đường thẳng GO // CG’ bằng quy tắc trọng tâm tam giác và quy tắc trung điểm của vectơ.
- Tính độ dài của \(\overrightarrow {CG'} \) rồi suy ra độ dài của \(\overrightarrow {GO} \).
Lời giải chi tiết

Hình bình hành AA’B’B có O là giao điểm của hai đường chéo nên O là trung điểm của AB’. Do đó: \(2\overrightarrow {GO} = \overrightarrow {GA} + \overrightarrow {GB'} = \overrightarrow {GA} + \overrightarrow {GG'} + \overrightarrow {G'B'} \).
Vì ABC.A’B’C’ là hình lăng trụ có G, G’ lần lượt là trọng tâm của hai đáy nên: \(\overrightarrow {G'B'} = \overrightarrow {GB} ,\overrightarrow {GG'} = \overrightarrow {CC'} ,\overrightarrow {G'C'} = \overrightarrow {GC} \).
Suy ra: \(2\overrightarrow {GO} = \overrightarrow {GA} + \overrightarrow {CC'} + \overrightarrow {GB} = \overrightarrow {GA} + \overrightarrow {CG'} + \overrightarrow {G'C'} + \overrightarrow {GB} = \overrightarrow {GA} + \overrightarrow {CG'} + \overrightarrow {GC} + \overrightarrow {GB} \).
Áp dụng quy tắc trọng tâm của vectơ vào tam giác ABC, ta có: \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \).
Suy ra: \(2\overrightarrow {GO} = \left( {\overrightarrow {GA} + \overrightarrow {GC} + \overrightarrow {GB} } \right) + \overrightarrow {CG'} = \overrightarrow 0 + \overrightarrow {CG'} = \overrightarrow {CG'} \).
Vì tồn tại \(k = \frac{1}{2} \ne 0\) nên GO và CG’ song song với nhau.
b)
Vì ABC.A’B’C’ là hình lăng trụ là lăng trụ đứng nên tam giác CC’G’ vuông tại C’, ta có: \(CG' = \sqrt {CC{'^2} + C'G{'^2}} \).
Mà G’ là trọng tâm của tam giác đều A’B’C’ nên: \(C'G' = \frac{2}{3}.\frac{{\sqrt 3 }}{2}.2 = \frac{{2\sqrt 3 }}{3}\).
Suy ra: \(CG' = \sqrt {{3^2} + {{\left( {\frac{{2\sqrt 3 }}{3}} \right)}^2}} = \frac{{\sqrt {93} }}{3}\).
Từ câu a ta thấy \(\overrightarrow {GO} = \frac{1}{2}\overrightarrow {CG'} \) nên \(\left| {\overrightarrow {GO} } \right| = \frac{1}{2}\left| {\overrightarrow {CG'} } \right| = \frac{1}{2}.\frac{{\sqrt {93} }}{3} = \frac{{\sqrt {93} }}{6}\).
Bài tập 2.5 trang 65 SGK Toán 12 tập 1 yêu cầu học sinh vận dụng kiến thức về đạo hàm để khảo sát hàm số bậc ba. Cụ thể, bài toán thường yêu cầu tìm cực trị, khoảng đồng biến, nghịch biến và vẽ đồ thị hàm số. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các bước sau:
Để minh họa, chúng ta sẽ cùng giải một bài tập cụ thể. Giả sử hàm số cần khảo sát là: y = x3 - 3x2 + 2
y' = 3x2 - 6x
Giải phương trình y' = 0: 3x2 - 6x = 0 => 3x(x - 2) = 0 => x = 0 hoặc x = 2
Vậy hàm số có hai điểm cực trị: x1 = 0 và x2 = 2
y'' = 6x - 6
Giải phương trình y'' = 0: 6x - 6 = 0 => x = 1
Vậy hàm số có điểm uốn tại x = 1
(Phần này yêu cầu vẽ đồ thị, không thể hiển thị trực tiếp ở đây. Học sinh cần tự vẽ dựa trên các thông tin đã tính toán)
Tusach.vn là địa chỉ tin cậy cho các em học sinh cần tìm kiếm tài liệu học Toán 12. Chúng tôi cung cấp đầy đủ các bài giải SGK, bài tập trắc nghiệm, đề thi thử và các tài liệu ôn thi khác. Hãy truy cập Tusach.vn ngay hôm nay để học Toán 12 hiệu quả!
| Dạng bài tập | Phương pháp giải |
|---|---|
| Tìm cực trị | Giải phương trình y' = 0 |
| Xác định khoảng đồng biến, nghịch biến | Xét dấu đạo hàm bậc nhất |
| Tìm điểm uốn | Giải phương trình y'' = 0 |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập