Bài tập 4.22 trang 31 SGK Toán 12 tập 2 là một bài toán quan trọng trong chương trình học giải tích lớp 12. Bài tập này thường liên quan đến việc ứng dụng đạo hàm để khảo sát hàm số, tìm cực trị và vẽ đồ thị hàm số.
Tusach.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập này, giúp các em học sinh nắm vững kiến thức và kỹ năng giải toán.
Gọi \((H)\) là hình phẳng giới hạn bởi parabol \(y = - {x^2} + 6x - 5\) và trục hoành. (Hình 4.28) a) Tính diện tích \(S\) của hình \((H)\). b) Từ thế kỉ thứ III trước Công nguyên, khi phép tính tích phân chưa ra đời, Archimedes đã dùng phương pháp của riêng mình và chỉ ra rằng diện tích của hình \((H)\) bằng \(\frac{4}{3}\) lần diện tích tam giác \(ABC\). Tính \(S\) theo kết quả mà Archimedes đã tìm ra và so sánh với kết quả ở câu a.
Đề bài
Gọi \((H)\) là hình phẳng giới hạn bởi parabol \(y = - {x^2} + 6x - 5\) và trục hoành. (Hình 4.28)
a) Tính diện tích \(S\) của hình \((H)\).
b) Từ thế kỉ thứ III trước Công nguyên, khi phép tính tích phân chưa ra đời, Archimedes đã dùng phương pháp của riêng mình và chỉ ra rằng diện tích của hình \((H)\) bằng \(\frac{4}{3}\) lần diện tích tam giác \(ABC\). Tính \(S\) theo kết quả mà Archimedes đã tìm ra và so sánh với kết quả ở câu a.

Phương pháp giải - Xem chi tiết
a)
Tính diện tích hình phẳng bằng tích phân xác định của hàm \(y = f(x)\) trên đoạn từ giao điểm của parabol với trục hoành.
Bước đầu tiên là tìm nghiệm của phương trình \[y = 0\] (giao điểm với trục hoành).
Sau đó, sử dụng tích phân xác định để tính diện tích hình phẳng.
b)
Diện tích của tam giác \(ABC\) được tính theo công thức diện tích tam giác.
Sau đó, sử dụng kết quả mà Archimedes đã chỉ ra: Diện tích hình \((H)\) bằng \(\frac{4}{3}\) lần diện tích của tam giác \(ABC\)
Lời giải chi tiết
a)
- Phương trình parabol là:
\(y = - {x^2} + 6x - 5.\)
- Tìm nghiệm của phương trình \(y = 0\):
\( - {x^2} + 6x - 5 = 0\quad \Rightarrow \quad x = 1,{\mkern 1mu} x = 5.\)
- Diện tích hình phẳng \(S\) được tính bằng tích phân:
\(S = \int_1^5 {( - {x^2} + 6x - 5)} {\mkern 1mu} dx.\)
Tính tích phân:
\(S = \left[ { - \frac{{{x^3}}}{3} + 3{x^2} - 5x} \right]_1^5 = \left( { - \frac{{125}}{3} + 50} \right) - \left( { - \frac{1}{3} - 2} \right) = \frac{{32}}{3}.\)
Vậy diện tích hình phẳng \(S = \frac{{32}}{3}\).
b)
- Diện tích tam giác \(ABC\) với \(A(3,4)\), \(B(1,0)\), và \(C(5,0)\) là:
\({S_{\Delta ABC}} = \frac{1}{2} \times 4 \times 4 = 8.\)
- Theo Archimedes, diện tích hình \((H)\) bằng \(\frac{4}{3}\) lần diện tích tam giác \(ABC\):
\(S = \frac{4}{3} \times 8 = \frac{{32}}{3}.\)
Kết quả này khớp với kết quả của câu a.
Bài tập 4.22 trang 31 SGK Toán 12 tập 2 thường yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các vấn đề liên quan đến hàm số. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các bước sau:
Chúng ta sẽ áp dụng các bước trên để giải bài tập này:
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| y' | + | - | + | |
| y | Đồng biến | Nghịch biến | Đồng biến |
Tusach.vn luôn cập nhật lời giải chi tiết các bài tập trong SGK Toán 12 tập 1, tập 2. Chúng tôi hy vọng rằng với những hướng dẫn trên, các em học sinh sẽ tự tin hơn trong việc giải bài tập 4.22 trang 31 và các bài tập khác trong chương trình Toán 12. Hãy truy cập Tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập