1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài tập 4.15 trang 20 SGK Toán 12 tập 2 - Cùng khám phá

Giải bài tập 4.15 trang 20 SGK Toán 12 tập 2 - Cùng khám phá

Giải Bài Tập 4.15 Trang 20 Toán 12 Tập 2

Bài tập 4.15 trang 20 SGK Toán 12 tập 2 là một bài toán quan trọng trong chương trình học giải tích lớp 12. Bài toán này thường liên quan đến việc ứng dụng đạo hàm để khảo sát hàm số, tìm cực trị và vẽ đồ thị hàm số.

Tusach.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập này, giúp các em học sinh nắm vững kiến thức và kỹ năng giải toán.

Đường gấp khúc ABD trong Hình 4.8 là đồ thị vận tốc \(v(t)\) của một vật (t = 0 là thời điểm vật bắt đầu chuyển động). Trong khoảng thời gian mà \(v < 0\)thì vật chuyển động ngược chiều với khoảng thời gian mà \(v > 0\). a) Viết công thức của hàm số \(v(t)\) với \(t \in [0;9]\). b) Biết rằng quãng đường vật đi chuyển với vận tốc \(v = v(t)\) từ thời điểm \(t = a\) đến thời điểm \(t = b\) là \(s = \int_a^b | v(t)|{\mkern 1mu} dt\), tính quãng đường vật di chuyển được trong 9 giây kể từ khi vật

Đề bài

Đường gấp khúc ABD trong Hình 4.8 là đồ thị vận tốc \(v(t)\) của một vật (t = 0 là thời điểm vật bắt đầu chuyển động). Trong khoảng thời gian mà \(v < 0\)thì vật chuyển động ngược chiều với khoảng thời gian mà \(v > 0\).

a) Viết công thức của hàm số \(v(t)\) với \(t \in [0;9]\).

b) Biết rằng quãng đường vật đi chuyển với vận tốc \(v = v(t)\) từ thời điểm \(t = a\) đến thời điểm \(t = b\) là \(s = \int_a^b | v(t)|{\mkern 1mu} dt\), tính quãng đường vật di chuyển được trong 9 giây kể từ khi vật bắt đầu chuyển động.

c) Tính tổng diện tích của hình thang \(OABC\) và tam giác \(CDE\) rồi so sánh với kết quả ở câu b.

Giải bài tập 4.15 trang 20 SGK Toán 12 tập 2 - Cùng khám phá 1

Phương pháp giải - Xem chi tiếtGiải bài tập 4.15 trang 20 SGK Toán 12 tập 2 - Cùng khám phá 2

a)

- Xác định các đoạn của đồ thị: Đồ thị gồm các đoạn AB, BC, và CD.

b)

- Sử dụng công thức tính quãng đường từ \(t = 0\) đến \(t = 9\) bằng tích phân của \(|v(t)|\).

- Tính từng phần diện tích tương ứng với các đoạn AB, BC, CD trên đồ thị.

c)

- Diện tích hình thang \(OABC\) được tính theo công thức diện tích hình thang.

- Diện tích tam giác \(CDE\) được tính theo công thức diện tích tam giác.

Lời giải chi tiết

a)

- Đoạn \(AB\): Ở đây, đồ thị có giá trị vận tốc không đổi là 4 m/s từ \(t = 0\) đến \(t = 6\), tức là:

\(v(t) = 4\quad {\rm{,}}\quad t \in [0;6].\)

- Đoạn \(BC\) và \(CD\): Đoạn này là một đường thẳng dốc xuống từ \(t = 6\) đến \(t = 8\), vận tốc giảm từ 4 m/s xuống -2 m/s. Phương trình đường thẳng có dạng:

\(v(t) = - 2t + 16\,\,\,\,\,\,{\rm{,}}\quad t \in [6;9].\)

Vậy, công thức của hàm vận tốc \(v(t)\) theo từng khoảng là:

\(v(t) = \mathop \{ \nolimits_{ - 2t + 16\,\,\,\,\,\,khi\,\,6 < t \le 9}^{4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,0 \le t \le 6} \)

b)

- Quãng đường được tính là tích phân của \(|v(t)|\). Cần tính tích phân của các đoạn như sau:

Đoạn AB:

\(\int_0^6 | v(t)|dt = \int_0^6 4 {\mkern 1mu} dt = 4 \times 6 = 24{\mkern 1mu} {\rm{m}}.\)

Đoạn BC và CD:

\(\int_6^9 | v(t)|dt = \int_6^9 {\left| { - 2t + 16} \right|} dt = \int_6^8 {\left( { - 2t + 16} \right)dt + } \int_8^9 {\left( {2t - 16} \right)dt} \)

\(\int_6^9 | v(t)|dt = \left. {( - {t^2} + 16t)} \right|_6^8 + \left. {({t^2} - 16t)} \right|_8^9 = 4 + 1 = 5m\)

Tổng quãng đường vật di chuyển là:

\(24 + 5 = 29{\mkern 1mu} {\rm{m}}.\)

c)

Diện tích hình thang \(OABC\):

Công thức diện tích hình thang: 

\({S_{{\rm{ht}}}} = \frac{1}{2} \times (AB + OC) \times OA = \frac{1}{2} \times (6 + 8) \times 4 = 28{\mkern 1mu} .\)

Diện tích tam giác \(CDE\):

Công thức diện tích tam giác:

\({S_{{\rm{tg}}}} = \frac{1}{2} \times CE \times ED = \frac{1}{2} \times 1 \times 2 = 1{\mkern 1mu} \)

Tổng diện tích là:

\({S_{{\rm{tong}}}} = 28 + 1 = 29\)

Vậy kết quả ở câu c và câu b là giống nhau.

Giải Bài Tập 4.15 Trang 20 SGK Toán 12 Tập 2: Chi Tiết và Dễ Hiểu

Bài tập 4.15 trang 20 SGK Toán 12 tập 2 thường yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các vấn đề liên quan đến hàm số. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các bước sau:

  1. Xác định tập xác định của hàm số: Tìm khoảng mà hàm số có nghĩa.
  2. Tính đạo hàm cấp nhất: Sử dụng các quy tắc đạo hàm để tìm đạo hàm f'(x).
  3. Tìm điểm tới hạn: Giải phương trình f'(x) = 0 để tìm các điểm mà đạo hàm bằng 0 hoặc không xác định.
  4. Khảo sát dấu của đạo hàm: Lập bảng xét dấu f'(x) để xác định khoảng hàm số đồng biến, nghịch biến.
  5. Tìm cực trị: Dựa vào bảng xét dấu đạo hàm để xác định các điểm cực đại, cực tiểu của hàm số.
  6. Tính đạo hàm cấp hai (nếu cần): Sử dụng đạo hàm cấp hai để xác định tính lồi, lõm của đồ thị hàm số.
  7. Vẽ đồ thị hàm số: Dựa vào các thông tin đã thu thập để vẽ đồ thị hàm số.

Ví dụ minh họa (Giả sử bài tập 4.15 là hàm số y = x^3 - 3x^2 + 2)

Chúng ta sẽ áp dụng các bước trên để giải bài tập này:

  1. Tập xác định: Hàm số xác định trên R.
  2. Đạo hàm cấp nhất: y' = 3x^2 - 6x
  3. Điểm tới hạn: 3x^2 - 6x = 0 => x = 0 hoặc x = 2
  4. Bảng xét dấu đạo hàm:

    x-∞02+∞
    y'+-+
    yĐồng biếnNghịch biếnĐồng biến
  5. Cực trị:
    • x = 0: Điểm cực đại, y = 2
    • x = 2: Điểm cực tiểu, y = -2
  6. Đạo hàm cấp hai: y'' = 6x - 6
  7. Tính lồi, lõm:
    • x < 1: y'' < 0, hàm số lõm
    • x > 1: y'' > 0, hàm số lồi

Lưu ý quan trọng

Khi giải bài tập về khảo sát hàm số, cần chú ý:

  • Kiểm tra kỹ tập xác định của hàm số.
  • Tính đạo hàm chính xác.
  • Lập bảng xét dấu đạo hàm cẩn thận.
  • Kết hợp các thông tin đã thu thập để vẽ đồ thị hàm số một cách chính xác.

Tusach.vn – Đồng hành cùng bạn học Toán 12

Tusach.vn luôn cập nhật lời giải chi tiết các bài tập trong SGK Toán 12 tập 2, giúp các em học sinh học tập hiệu quả và đạt kết quả cao. Hãy truy cập Tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN