Chào mừng bạn đến với lời giải chi tiết bài 6.9 trang 45 sách bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng và dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
tusach.vn luôn đồng hành cùng bạn trên con đường chinh phục môn Toán.
Có hai túi kẹo. Túi I có 3 chiếc kẹo sô cô la đen và 2 chiếc kẹo sô cô la trắng. Túi II có 4 chiếc kẹo sô cô la đen và 3 chiếc kẹo sô cô la trắng. Từ túi I lấy ngẫu nhiên một chiếc kẹo. Nếu là chiếc kẹo sô cô la đen thì thêm 2 chiếc kẹo sô cô la đen vào túi II. Nếu là chiếc kẹo sô cô la trắng thì thêm hai chiếc kẹo sô cô la trắng vào túi II. Sau đó từ túi II lấy ngẫu nhiên một chiếc kẹo. Tính xác suất để lấy được chiếc kẹo sô cô la trắng.
Đề bài
Có hai túi kẹo. Túi I có 3 chiếc kẹo sô cô la đen và 2 chiếc kẹo sô cô la trắng. Túi II có 4 chiếc kẹo sô cô la đen và 3 chiếc kẹo sô cô la trắng. Từ túi I lấy ngẫu nhiên một chiếc kẹo. Nếu là chiếc kẹo sô cô la đen thì thêm 2 chiếc kẹo sô cô la đen vào túi II. Nếu là chiếc kẹo sô cô la trắng thì thêm hai chiếc kẹo sô cô la trắng vào túi II. Sau đó từ túi II lấy ngẫu nhiên một chiếc kẹo. Tính xác suất để lấy được chiếc kẹo sô cô la trắng.
Phương pháp giải - Xem chi tiết
Xác định các biến cố và áp dụng công thức xác suất toàn phần.
Lời giải chi tiết
Gọi A là biến cố: “Lấy được một chiếc kẹo trắng từ túi I”;
B là biến cố: “Lấy được một chiếc kẹo trắng từ túi II”.
Ta có \(P\left( A \right) = \frac{2}{5}\), \(P\left( {\overline A } \right) = \frac{3}{5}\);
\(P\left( {B|A} \right) = \frac{5}{9}\), \(P\left( {B|\overline A } \right) = \frac{3}{9} = \frac{1}{3}\).
Theo công thức xác suất toàn phần ta có:
\(P\left( B \right) = P\left( A \right) \cdot P\left( {B|A} \right) + P\left( {\bar A} \right) \cdot P\left( {B|\bar A} \right) = \frac{2}{5} \cdot \frac{5}{9} + \frac{3}{5} \cdot \frac{1}{3} = \frac{{19}}{{45}}\).
Bài 6.9 trang 45 sách bài tập Toán 12 Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán liên quan đến tính đơn điệu, cực trị của hàm số, hoặc các bài toán ứng dụng thực tế.
Thông thường, bài 6.9 sẽ đưa ra một hàm số cụ thể và yêu cầu:
Để giải bài 6.9 một cách hiệu quả, bạn cần thực hiện theo các bước sau:
Giải:
1. Tính đạo hàm: y' = 3x^2 - 6x
2. Tìm tập xác định: Hàm số xác định trên R.
3. Tìm điểm tới hạn: 3x^2 - 6x = 0 => x = 0 hoặc x = 2
4. Xét dấu đạo hàm:
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| y' | + | - | + | |
| f(x) | Đồng biến | Nghịch biến | Đồng biến |
5. Xác định cực trị:
Hy vọng với lời giải chi tiết và hướng dẫn cụ thể trên, bạn đã có thể tự tin giải bài 6.9 trang 45 sách bài tập Toán 12 Kết nối tri thức. Hãy luyện tập thêm nhiều bài tập khác để củng cố kiến thức và nâng cao kỹ năng giải toán của mình. tusach.vn sẽ luôn là người bạn đồng hành đáng tin cậy của bạn trên con đường học tập.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập