1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 4.43 trang 21 sách bài tập toán 12 - Kết nối tri thức

Giải bài 4.43 trang 21 sách bài tập toán 12 - Kết nối tri thức

Giải bài 4.43 trang 21 SBT Toán 12 - Kết nối tri thức

Chào mừng các em học sinh đến với lời giải chi tiết bài 4.43 trang 21 sách bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ cung cấp đáp án chính xác và phương pháp giải bài tập một cách dễ hiểu nhất.

Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất.

a) (intlimits_0^3 {left| {3 - x} right|dx} ); b) (intlimits_0^2 {left( {{e^x} - 4{x^3}} right)dx} ); c) (intlimits_0^{frac{pi }{2}} {left( {sin x + cos x} right)dx} ).

Đề bài

a) \(\int\limits_0^3 {\left| {3 - x} \right|dx} \);

b) \(\int\limits_0^2 {\left( {{e^x} - 4{x^3}} \right)dx} \)

c) \(\int\limits_0^{\frac{\pi }{2}} {\left( {\sin x + \cos x} \right)dx} \).

Phương pháp giải - Xem chi tiếtGiải bài 4.43 trang 21 sách bài tập toán 12 - Kết nối tri thức 1

Ý a: Bỏ dấu trị tuyệt đối theo điều kiện \(\left| {3 - x} \right| = 3 - x\) với \(x \in \left[ {0;3} \right]\). Sử dụng các công thức tìm nguyên hàm cơ bản của hàm lũy thừa.

Ý b: Áp dụng các công thức tìm nguyên hàm cơ bản của hàm mũ và hàm lũy thừa.

Ý c: Áp dụng các công thức tìm nguyên hàm cơ bản của hàm lượng giác.

Lời giải chi tiết

a) Ta có \(\left| {3 - x} \right| = 3 - x\) với \(x \in \left[ {0;3} \right]\).

Suy ra \(\int\limits_0^3 {\left| {3 - x} \right|dx} = \int\limits_0^3 {\left( {3 - x} \right)dx} = \left. {\left( {3x - \frac{{{x^2}}}{2}} \right)} \right|_0^3 = 9 - \frac{9}{2} = \frac{9}{2}\).

b) Ta có \(\int\limits_0^2 {\left( {{e^x} - 4{x^3}} \right)dx} = \left. {\left( {{e^x} - {x^4}} \right)} \right|_0^2 = {e^2} - {2^4} - 1 = {e^2} - 17\).

c) \(\int\limits_0^{\frac{\pi }{2}} {\left( {\sin x + \cos x} \right)dx} = \left. {\left( { - \cos x + \sin x} \right)} \right|_0^{\frac{\pi }{2}} = 1 + 1 = 2\).

Giải bài 4.43 trang 21 SBT Toán 12 - Kết nối tri thức: Tổng quan và Phương pháp

Bài 4.43 trang 21 sách bài tập Toán 12 Kết nối tri thức thuộc chương trình học về đạo hàm và ứng dụng của đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế, chẳng hạn như tìm cực trị của hàm số, khảo sát hàm số, hoặc giải các bài toán tối ưu hóa.

Nội dung bài 4.43 trang 21 SBT Toán 12 - Kết nối tri thức

Thông thường, bài 4.43 sẽ bao gồm một hoặc nhiều câu hỏi nhỏ, yêu cầu học sinh:

  • Tính đạo hàm của hàm số cho trước.
  • Tìm các điểm cực trị của hàm số.
  • Khảo sát sự biến thiên của hàm số.
  • Giải các bài toán liên quan đến ứng dụng của đạo hàm (ví dụ: tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một khoảng cho trước).

Lời giải chi tiết bài 4.43 trang 21 SBT Toán 12 - Kết nối tri thức

Để giải bài 4.43 trang 21 SBT Toán 12 Kết nối tri thức một cách hiệu quả, các em cần:

  1. Đọc kỹ đề bài: Xác định rõ yêu cầu của bài toán.
  2. Xác định hàm số: Xác định hàm số cần khảo sát hoặc giải quyết.
  3. Tính đạo hàm: Tính đạo hàm cấp nhất và cấp hai của hàm số.
  4. Tìm điểm cực trị: Giải phương trình đạo hàm cấp nhất bằng 0 để tìm các điểm cực trị.
  5. Khảo sát hàm số: Xác định khoảng đồng biến, nghịch biến, cực đại, cực tiểu của hàm số.
  6. Giải bài toán: Vận dụng các kiến thức đã học để giải quyết bài toán.

Ví dụ minh họa (giả định):

Giả sử bài 4.43 yêu cầu tìm cực trị của hàm số y = x3 - 3x2 + 2.

Lời giải:

  1. Tính đạo hàm: y' = 3x2 - 6x
  2. Tìm điểm cực trị: Giải phương trình 3x2 - 6x = 0, ta được x = 0 hoặc x = 2.
  3. Xác định loại cực trị:
    • y'' = 6x - 6
    • y''(0) = -6 < 0 => Hàm số đạt cực đại tại x = 0, ymax = 2
    • y''(2) = 6 > 0 => Hàm số đạt cực tiểu tại x = 2, ymin = -2

Mẹo giải bài tập đạo hàm và ứng dụng

  • Nắm vững các công thức đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng máy tính cầm tay để kiểm tra lại kết quả.
  • Tham khảo các tài liệu tham khảo, sách giải bài tập để hiểu rõ hơn về kiến thức.

Tusach.vn - Đồng hành cùng học sinh

Tusach.vn cung cấp lời giải chi tiết, dễ hiểu cho tất cả các bài tập trong sách bài tập Toán 12 Kết nối tri thức. Chúng tôi hy vọng rằng với sự hỗ trợ của Tusach.vn, các em sẽ học tập hiệu quả và đạt kết quả tốt nhất.

Ngoài ra, các em có thể tham khảo thêm các bài giải khác tại tusach.vn.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN