1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 2.9 trang 45 sách bài tập toán 12 - Kết nối tri thức

Giải bài 2.9 trang 45 sách bài tập toán 12 - Kết nối tri thức

Giải bài 2.9 trang 45 SBT Toán 12 - Kết nối tri thức

Chào mừng bạn đến với lời giải chi tiết bài 2.9 trang 45 sách bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng và dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.

Tusach.vn luôn đồng hành cùng bạn trên con đường chinh phục môn Toán.

Cho hình hộp \(ABCD.A'B'C'D'\). Đặt \(\overrightarrow {AA'} = \overrightarrow x \), \(\overrightarrow {AB} = \overrightarrow y \), \(\overrightarrow {AC} = \overrightarrow z \). Hãy biểu diễn các vectơ sau qua ba vectơ \(\overrightarrow x ,{\rm{ }}\overrightarrow y ,{\rm{ }}\overrightarrow z \): a) \(\overrightarrow {AD} \); b) \(\overrightarrow {AC'} \); c) \(\overrightarrow {BD'} \).

Đề bài

Cho hình hộp \(ABCD.A'B'C'D'\). Đặt \(\overrightarrow {AA'} = \overrightarrow x \), \(\overrightarrow {AB} = \overrightarrow y \), \(\overrightarrow {AC} = \overrightarrow z \). Hãy biểu diễn các vectơ sau qua ba vectơ \(\overrightarrow x ,{\rm{ }}\overrightarrow y ,{\rm{ }}\overrightarrow z \):

a) \(\overrightarrow {AD} \);

b) \(\overrightarrow {AC'} \);

c) \(\overrightarrow {BD'} \).

Phương pháp giải - Xem chi tiếtGiải bài 2.9 trang 45 sách bài tập toán 12 - Kết nối tri thức 1

Ý a: Sử dụng tích chất của hình bình hành để biểu diễn \(\overrightarrow {AD} \) theo một vectơ khác phù hợp, tách, biến đổi để xuất hiện các vectơ \(\overrightarrow x ,{\rm{ }}\overrightarrow y ,{\rm{ }}\overrightarrow z \).

Ý b: Tương tự ý a, sử dụng tích chất của hình bình hành để biểu diễn \(\overrightarrow {AC'} \) theo một vectơ khác phù hợp, tách, biến đổi để xuất hiện các vectơ \(\overrightarrow x ,{\rm{ }}\overrightarrow y ,{\rm{ }}\overrightarrow z \).

Ý c: Tương tự hai ý trên, ngoài mục đích tách để xuất hiện \(\overrightarrow x ,{\rm{ }}\overrightarrow y ,{\rm{ }}\overrightarrow z \) còn có thể tách để xuất hiện các vectơ đã tìm ở ý a và b như \(\overrightarrow {AD} \) và \(\overrightarrow {AC'} \).

Lời giải chi tiết

a) Ta có đáy \(ABCD\) là hình bình hành do đó \(\overrightarrow {AD} = \overrightarrow {BC} \).

Mặt khác \(\overrightarrow {BC} = \overrightarrow {BA} + \overrightarrow {AC} = - \overrightarrow {AB} + \overrightarrow {AC} = - \overrightarrow y + \overrightarrow z \). Vậy \(\overrightarrow {AD} = - \overrightarrow y + \overrightarrow z \).

b) Ta có \(ACC'A'\) là hình bình hành suy ra \(\overrightarrow {CC'} = \overrightarrow {AA'} \).

Do đó \(\overrightarrow {AC'} = \overrightarrow {AC} + \overrightarrow {CC'} = \overrightarrow {AC} + \overrightarrow {AA'} = \overrightarrow z + \overrightarrow x \).

c) Ta có \(\overrightarrow {DD'} = \overrightarrow {AA'} \). Khi đó

\(\overrightarrow {BD'} = \overrightarrow {BA} + \overrightarrow {AD} + \overrightarrow {DD'} = - \overrightarrow {AB} - \overrightarrow y + \overrightarrow z + \overrightarrow {AA'} = - \overrightarrow y - \overrightarrow y + \overrightarrow z + \overrightarrow x = \overrightarrow x - 2\overrightarrow y + \overrightarrow z \).

Giải bài 2.9 trang 45 SBT Toán 12 - Kết nối tri thức: Tổng quan

Bài 2.9 trang 45 sách bài tập Toán 12 Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Việc nắm vững các công thức đạo hàm cơ bản và kỹ năng tính đạo hàm là yếu tố then chốt để hoàn thành bài tập này một cách hiệu quả.

Nội dung bài tập 2.9 trang 45 SBT Toán 12 - Kết nối tri thức

Bài tập 2.9 thường xoay quanh việc tính đạo hàm của các hàm số lượng giác, hàm số mũ, hàm số logarit, hoặc các hàm số phức tạp hơn được xây dựng từ các hàm số cơ bản này. Đôi khi, bài tập còn yêu cầu học sinh tìm đạo hàm cấp hai, đạo hàm của hàm hợp, hoặc áp dụng đạo hàm để giải các bài toán liên quan đến cực trị, khoảng đơn điệu của hàm số.

Lời giải chi tiết bài 2.9 trang 45 SBT Toán 12 - Kết nối tri thức

Để giải bài 2.9 trang 45 SBT Toán 12 Kết nối tri thức, chúng ta cần thực hiện các bước sau:

  1. Xác định hàm số cần tính đạo hàm: Đọc kỹ đề bài để xác định chính xác hàm số f(x) mà chúng ta cần tìm đạo hàm.
  2. Chọn công thức đạo hàm phù hợp: Dựa vào dạng của hàm số, chọn công thức đạo hàm tương ứng. Ví dụ, nếu hàm số chứa hàm sin(x), ta sử dụng công thức đạo hàm của sin(x) là cos(x).
  3. Áp dụng công thức đạo hàm: Thay các thành phần của hàm số vào công thức đạo hàm đã chọn và thực hiện các phép tính để tìm ra đạo hàm f'(x).
  4. Rút gọn kết quả: Sau khi tính đạo hàm, hãy rút gọn biểu thức để có được kết quả cuối cùng đơn giản nhất.

Ví dụ minh họa:

Giả sử bài tập yêu cầu tính đạo hàm của hàm số f(x) = 2sin(x) + 3x2 - 1.

Ta thực hiện như sau:

  • Đạo hàm của 2sin(x) là 2cos(x).
  • Đạo hàm của 3x2 là 6x.
  • Đạo hàm của -1 là 0.

Vậy, f'(x) = 2cos(x) + 6x.

Mẹo giải bài tập đạo hàm Toán 12

  • Nắm vững các công thức đạo hàm cơ bản: Đây là nền tảng để giải quyết mọi bài tập về đạo hàm.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau sẽ giúp bạn làm quen với các dạng bài và rèn luyện kỹ năng tính đạo hàm.
  • Sử dụng các quy tắc đạo hàm: Quy tắc chuỗi, quy tắc tích, quy tắc thương là những công cụ hữu ích để tính đạo hàm của các hàm số phức tạp.
  • Kiểm tra lại kết quả: Sau khi tính đạo hàm, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Tài liệu tham khảo hữu ích

Ngoài sách bài tập, bạn có thể tham khảo thêm các tài liệu sau để học tốt môn Toán 12:

  • Sách giáo khoa Toán 12 - Kết nối tri thức
  • Các trang web học Toán trực tuyến uy tín
  • Các video bài giảng Toán 12 trên YouTube

Kết luận

Hy vọng với lời giải chi tiết và các mẹo giải bài tập trên, bạn đã có thể tự tin giải bài 2.9 trang 45 SBT Toán 12 Kết nối tri thức. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN