Chào mừng các em học sinh đến với lời giải chi tiết bài 1.40 trang 27 sách bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ cung cấp đáp án chính xác và phương pháp giải bài tập một cách dễ hiểu nhất.
Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất.
Một khối bưu kiện có hình hộp chữ nhật được quy định về kích cỡ như sau: tổng chiều dài và chu vi thiết diện ngang (hình vuông) là (240) cm. Gọi (x) là độ dài cạnh của thiết diện ngang. a) Tính thể tích của khối bưu kiện theo (x). b) Kí hiệu (Vleft( x right)) là thể tích của khối bưu kiện. Khảo sát sự biến thiên của hàm số (y = Vleft( x right)).
Đề bài
Một khối bưu kiện có hình hộp chữ nhật được quy định về kích cỡ như sau: tổng chiều dài và chu vi thiết diện ngang (hình vuông) là \(240\) cm. Gọi \(x\) là độ dài cạnh của thiết diện ngang.
a) Tính thể tích của khối bưu kiện theo \(x\).
b) Kí hiệu \(V\left( x \right)\) là thể tích của khối bưu kiện. Khảo sát sự biến thiên của hàm số \(y = V\left( x \right)\).

Phương pháp giải - Xem chi tiết
Ý a:
+ Gọi chiều dài là y, biểu diễn \(y\) theo \(x\).
+ Xác định công thức thể tích \(V\left( x \right) = x \cdot y \cdot x\).
Ý b: Khảo sát hàm số \(V\left( x \right)\).
Lời giải chi tiết
a) Giả sử chiều dài là \(y\), ta có \(y + 4x = 240\) suy ra \(y = - 4x + 240\).
Khi đó thể tích khối bưu kiện là \(x \cdot y \cdot x = x \cdot \left( { - 4x + 240} \right) \cdot x = {x^2} \cdot \left( { - 4x + 240} \right)\) (cm3)
b) Xét hàm số \(V\left( x \right) = {x^2} \cdot \left( { - 4x + 240} \right)\).
Tập xác định: \(\left( {0;60} \right)\).
Sự biến thiên: \(V'\left( x \right) = 480x - 12{x^2}\) khi đó \(V'\left( x \right) = 0 \Leftrightarrow 480x - 12{x^2} = 0 \Leftrightarrow x = 40\) do \(x > 0\).
+ Hàm số đồng biến trên khoảng \(\left( {0;40} \right)\), nghịch biến trên \(\left( {40;60} \right)\).
+ Hàm số đạt cực đại tại \(x = 40\) với \({{V}_{C}}=128000\)cm3.
+ Giới hạn tại vô cực \(\mathop {\lim }\limits_{x \to + \infty } N\left( t \right) = 1200\)
+ Bảng biến thiên:

Bài 1.40 trang 27 sách bài tập Toán 12 Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Việc nắm vững các công thức đạo hàm cơ bản và kỹ năng tính đạo hàm là yếu tố then chốt để hoàn thành bài tập này.
Bài 1.40 yêu cầu học sinh giải các bài toán liên quan đến việc tìm đạo hàm của hàm số, xét tính đơn điệu của hàm số, và tìm cực trị của hàm số. Cụ thể, bài tập có thể bao gồm:
Để giúp các em hiểu rõ hơn về cách giải bài 1.40, chúng ta sẽ đi vào giải chi tiết từng phần của bài tập. (Ở đây sẽ là lời giải chi tiết cho từng ý của bài 1.40, ví dụ:)
Cho hàm số y = x3 - 3x2 + 2. Hãy tính đạo hàm của hàm số.
Lời giải:
y' = 3x2 - 6x
Xác định khoảng đồng biến của hàm số y = x3 - 3x2 + 2.
Lời giải:
Để xác định khoảng đồng biến, ta cần tìm khoảng mà y' > 0.
3x2 - 6x > 0
3x(x - 2) > 0
Vậy, hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞).
Để giải tốt các bài tập về đạo hàm, các em cần lưu ý những điều sau:
Ngoài sách bài tập, các em có thể tham khảo thêm các tài liệu sau để học tốt môn Toán 12:
Hy vọng với lời giải chi tiết và những lưu ý trên, các em sẽ tự tin hơn khi giải bài 1.40 trang 27 sách bài tập Toán 12 Kết nối tri thức. Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập