1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 1.56 trang 34 sách bài tập toán 12 - Kết nối tri thức

Giải bài 1.56 trang 34 sách bài tập toán 12 - Kết nối tri thức

Giải bài 1.56 trang 34 SBT Toán 12 Kết nối tri thức

Chào mừng bạn đến với lời giải chi tiết bài 1.56 trang 34 sách bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Chúng tôi luôn cố gắng cung cấp những lời giải chính xác và đầy đủ nhất, đồng thời giải thích rõ ràng từng bước để bạn có thể hiểu sâu sắc về bài toán.

Cho hàm số (y = {e^{ - frac{{{x^2}}}{2}}}) có đồ thị (left( C right)). Xét các mệnh đề sau: (I): Điểm cực đại của đồ thị (left( C right)) là (left( {0;1} right)). (II): Trục hoành là tiệm cận ngang của đồ thị (left( C right)). (III): Giá trị lớn nhất của hàm số là 1. (IV): Điểm cực đại của đồ thị (left( C right)) là (x = 0). Số mệnh đề đúng trong các mệnh đề trên là A. (4). B. (1). C. (2). D. (3).

Đề bài

Cho hàm số \(y = {e^{ - \frac{{{x^2}}}{2}}}\) có đồ thị \(\left( C \right)\). Xét các mệnh đề sau:

(I): Điểm cực đại của đồ thị \(\left( C \right)\) là \(\left( {0;1} \right)\).

(II): Trục hoành là tiệm cận ngang của đồ thị \(\left( C \right)\).

(III): Giá trị lớn nhất của hàm số là 1.

(IV): Điểm cực đại của đồ thị \(\left( C \right)\) là \(x = 0\).

Số mệnh đề đúng trong các mệnh đề trên là

A. \(4\)

B. \(1\)

C. \(2\)

D. \(3\)

Phương pháp giải - Xem chi tiếtGiải bài 1.56 trang 34 sách bài tập toán 12 - Kết nối tri thức 1

Xét từng mệnh đề, tìm cực đại, tiệm cận, giá trị lớn nhất để biết được mệnh đề đó đúng hay sai.

Lời giải chi tiết

Ta có \(y' = \left( {\frac{{ - {x^2}}}{2}} \right)'{e^{\frac{{ - {x^2}}}{2}}} = - x{e^{\frac{{ - {x^2}}}{2}}} = - x\frac{1}{{{e^{\frac{{{x^2}}}{2}}}}} = \frac{{ - x}}{{{e^{\frac{{{x^2}}}{2}}}}}\).

Suy ra \(y' = 0 \Leftrightarrow \frac{{ - x}}{{{e^{\frac{{{x^2}}}{2}}}}} = 0 \Leftrightarrow x = 0\).

Ta xét dấu của đạo hàm. Qua điểm \(x = 0\), đạo hàm thay đổi giá trị từ dương sang âm. Do đó \(x = 0\) là một điểm cực đại của hàm số.

Giải bài 1.56 trang 34 sách bài tập toán 12 - Kết nối tri thức 2

Xét lần lượt các mệnh đề ta có:

+ Mệnh đề (I): Do \(x = 0\) là một điểm cực đại của hàm số nên điểm cực đại của đồ thị hàm số là \(\left( {0;1} \right)\).

Suy ra (I) đúng.

+ Mệnh đề (II): Ta có \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } {e^{ - \frac{{{x^2}}}{2}}} = \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{{e^{\frac{{{x^2}}}{2}}}}} = 0\) suy ra \(y = 0\) hay \(Ox\) là tiệm cận ngang của \(\left( C \right)\).

Suy ra (II) đúng.

+ Mệnh đề (III): Giá trị lớn nhất của hàm số là 1. Suy ra (III) đúng.

+ Mệnh đề (IV): Theo mệnh đề (I) đúng ta có điểm cực đại của đồ thị hàm số là \(\left( {0;1} \right)\) chứ không phải là \(x = 0\) nên (IV) sai.

Vậy có tất cả 3 mệnh đề đúng nên ta chọn đáp án D.

Giải bài 1.56 trang 34 SBT Toán 12 Kết nối tri thức: Tổng quan và Phương pháp

Bài 1.56 trang 34 sách bài tập Toán 12 Kết nối tri thức thuộc chương trình học về Đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán liên quan đến tính đạo hàm, tìm cực trị, hoặc khảo sát hàm số.

Nội dung bài tập 1.56 trang 34 SBT Toán 12 Kết nối tri thức

Thông thường, bài 1.56 sẽ bao gồm một hoặc nhiều câu hỏi nhỏ, yêu cầu học sinh:

  • Tính đạo hàm của hàm số cho trước.
  • Tìm các điểm cực trị của hàm số.
  • Khảo sát sự biến thiên của hàm số.
  • Giải các bài toán ứng dụng đạo hàm (ví dụ: tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một khoảng).

Phương pháp giải bài tập 1.56 trang 34 SBT Toán 12 Kết nối tri thức

  1. Xác định đúng công thức đạo hàm cần sử dụng: Tùy thuộc vào dạng hàm số, bạn cần chọn công thức đạo hàm phù hợp (đạo hàm của tổng, hiệu, tích, thương, hàm hợp, hàm lượng giác, hàm mũ, hàm logarit,...).
  2. Thực hiện tính đạo hàm một cách cẩn thận: Tránh sai sót trong quá trình tính toán, đặc biệt là khi áp dụng quy tắc đạo hàm phức tạp.
  3. Tìm điều kiện để tìm cực trị: Giải phương trình đạo hàm bằng 0 để tìm các điểm nghi ngờ là cực trị. Sau đó, kiểm tra dấu của đạo hàm cấp hai hoặc xét dấu đạo hàm cấp nhất để xác định loại cực trị (cực đại, cực tiểu).
  4. Khảo sát sự biến thiên của hàm số: Dựa vào đạo hàm cấp nhất và đạo hàm cấp hai, xác định khoảng đồng biến, nghịch biến, điểm cực trị, điểm uốn, và tiệm cận của hàm số.
  5. Giải bài toán ứng dụng: Sử dụng kiến thức về đạo hàm để tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một khoảng cho trước.

Ví dụ minh họa giải bài 1.56 trang 34 SBT Toán 12 Kết nối tri thức (Giả định)

Bài tập: Cho hàm số y = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.

Giải:

  1. Tính đạo hàm: y' = 3x2 - 6x
  2. Tìm điểm nghi ngờ cực trị: Giải phương trình y' = 0, ta được x = 0 hoặc x = 2.
  3. Xác định loại cực trị:
    • Với x < 0, y' > 0, hàm số đồng biến.
    • Với 0 < x < 2, y' < 0, hàm số nghịch biến.
    • Với x > 2, y' > 0, hàm số đồng biến.
    Vậy, hàm số đạt cực đại tại x = 0 và cực tiểu tại x = 2.
  4. Tính giá trị cực trị:
    • y(0) = 2 (cực đại)
    • y(2) = -2 (cực tiểu)

Lưu ý khi giải bài tập 1.56 trang 34 SBT Toán 12 Kết nối tri thức

  • Luôn kiểm tra lại kết quả tính đạo hàm và giải phương trình.
  • Sử dụng các công cụ hỗ trợ tính toán (máy tính bỏ túi, phần mềm toán học) để kiểm tra kết quả.
  • Luyện tập thường xuyên để nắm vững kiến thức và kỹ năng giải bài tập.

Tusach.vn – Nguồn tài liệu học tập Toán 12 uy tín

Tusach.vn cung cấp đầy đủ lời giải chi tiết các bài tập trong sách bài tập Toán 12 Kết nối tri thức, cùng với các tài liệu học tập hữu ích khác. Hãy truy cập tusach.vn để học tập hiệu quả và đạt kết quả cao trong môn Toán!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN