Chào mừng bạn đến với lời giải chi tiết bài 4.17 trang 13 sách bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng cung cấp những lời giải chính xác và đầy đủ nhất, đồng thời giải thích rõ ràng từng bước để bạn có thể hiểu sâu sắc về bài toán.
Lợi nhuận biên của một sản phẩm được mô hình hóa bởi (P'left( x right) = - 0,0005x + 12,2). a) Tìm sự thay đổi lợi nhuận khi doanh số bán hàng tăng từ 100 lên 101 đơn vị. b) Tìm sự thay đổi lợi nhuận khi doanh số bán hàng tăng từ 100 lên 110 đơn vị.
Đề bài
Lợi nhuận biên của một sản phẩm được mô hình hóa bởi
\(P'\left( x \right) = - 0,0005x + 12,2\).
a) Tìm sự thay đổi lợi nhuận khi doanh số bán hàng tăng từ 100 lên 101 đơn vị.
b) Tìm sự thay đổi lợi nhuận khi doanh số bán hàng tăng từ 100 lên 110 đơn vị.
Phương pháp giải - Xem chi tiết
Tính \(P\left( x \right)\).
Ý a: Tính \(\int\limits_{100}^{101} {P'\left( x \right)dx} \).
Ý b: Tính \(\int\limits_{100}^{110} {P'\left( x \right)dx} \).
Lời giải chi tiết
Ta có \(P'\left( x \right) = - 0,0005x + 12,2\),
suy ra \(P\left( x \right) = \int {\left( { - 0,0005x + 12,2} \right)dx} \)\( = - 0,0005 \cdot \frac{{{x^2}}}{2} + 12,2x + C\)\( = \frac{{ - {x^2}}}{{4000}} + \frac{{61}}{5}x + C\).
a) Sự thay đổi lợi nhuận khi doanh số bán hàng tăng từ 100 lên 101 đơn vị là
\(\int\limits_{100}^{101} {P'\left( x \right)dx} = \left. {\left( {\frac{{ - {x^2}}}{{4000}} + \frac{{61}}{5}x} \right)} \right|_{100}^{101} = \frac{1}{{4000}}\left( { - {{101}^2} + {{100}^2}} \right) + \frac{{61}}{5} = \frac{{48599}}{{4000}} = 12,14975\).
b) Sự thay đổi lợi nhuận khi doanh số bán hàng tăng từ 100 lên 110 đơn vị.
\(\int\limits_{100}^{110} {P'\left( x \right)dx} = \left. {\left( {\frac{{ - {x^2}}}{{4000}} + \frac{{61}}{5}x} \right)} \right|_{100}^{110} = \frac{1}{{4000}}\left( { - {{110}^2} + {{100}^2}} \right) + \frac{{61}}{5} \cdot 10 = \frac{{4895}}{{40}} = 121,457\).
Bài 4.17 trang 13 sách bài tập Toán 12 Kết nối tri thức là một bài tập quan trọng trong chương trình học. Bài tập này thường liên quan đến việc ứng dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Để giải bài tập này một cách hiệu quả, bạn cần nắm vững các khái niệm cơ bản về đạo hàm, quy tắc tính đạo hàm và các ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Thông thường, bài 4.17 yêu cầu học sinh:
Để giúp bạn hiểu rõ hơn về cách giải bài tập này, chúng tôi sẽ cung cấp một lời giải chi tiết và dễ hiểu. (Ở đây sẽ là lời giải chi tiết của bài 4.17, bao gồm các bước giải, giải thích và kết luận. Ví dụ:)
Ví dụ (giả định): Giả sử bài 4.17 yêu cầu tìm cực trị của hàm số y = x3 - 3x2 + 2.
y' = 3x2 - 6x
3x2 - 6x = 0 ⇔ 3x(x - 2) = 0
Vậy x = 0 hoặc x = 2
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| y' | + | - | + | |
| y | NB | ĐC | TC |
Hàm số đạt cực đại tại x = 0, yCĐ = 2 và đạt cực tiểu tại x = 2, yCT = -2.
Ngoài bài 4.17, bạn có thể tham khảo thêm các bài tập tương tự trong sách bài tập Toán 12 Kết nối tri thức để củng cố kiến thức và kỹ năng giải bài tập đạo hàm. Hãy tìm kiếm các bài tập có liên quan đến việc tìm cực trị, khoảng đơn điệu của hàm số và ứng dụng đạo hàm trong thực tế.
Chúc bạn học tốt!
Nếu bạn có bất kỳ câu hỏi nào, đừng ngần ngại để lại bình luận bên dưới. Chúng tôi sẽ cố gắng trả lời bạn trong thời gian sớm nhất.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập