1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 5.42 trang 38 sách bài tập toán 12 - Kết nối tri thức

Giải bài 5.42 trang 38 sách bài tập toán 12 - Kết nối tri thức

Giải bài 5.42 trang 38 SBT Toán 12 Kết nối tri thức

Chào mừng các em học sinh đến với lời giải chi tiết bài 5.42 trang 38 sách bài tập Toán 12 Kết nối tri thức. Bài tập này thuộc chương trình học Toán 12, tập trung vào kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.

tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp lời giải chính xác, dễ hiểu và nhanh chóng.

Trong không gian Oxyz, cho hai đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 3 + 2t\\y = - 2 + t\\z = 1 + 3t\end{array} \right.\) và \(\Delta ':\frac{{x + 2}}{3} = \frac{{y - 3}}{2} = \frac{{z - 1}}{{ - 2}}\). a) Chứng minh rằng hai đường thẳng \(\Delta \) và \(\Delta '\) chéo nhau. b) Viết phương trình mặt phẳng (P) chứa \(\Delta \) và song song với đường thẳng \(\Delta '\).

Đề bài

Trong không gian Oxyz, cho hai đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 3 + 2t\\y = - 2 + t\\z = 1 + 3t\end{array} \right.\) và \(\Delta ':\frac{{x + 2}}{3} = \frac{{y - 3}}{2} = \frac{{z - 1}}{{ - 2}}\).

a) Chứng minh rằng hai đường thẳng \(\Delta \) và \(\Delta '\) chéo nhau.

b) Viết phương trình mặt phẳng (P) chứa \(\Delta \) và song song với đường thẳng \(\Delta '\).

Phương pháp giải - Xem chi tiếtGiải bài 5.42 trang 38 sách bài tập toán 12 - Kết nối tri thức 1

Ý a: Tính tích vô hướng của tích có hướng của hai vectơ chỉ phương với \(\overrightarrow {AB} \), với A, B lần lượt thuộc \(\Delta \) và \(\Delta '\).

Ý b: Mặt phẳng (P) đi qua A và có một vectơ pháp tuyến là tích có hướng của hai vectơ chỉ phương.

Lời giải chi tiết

a) Vectơ chỉ phương của \(\Delta \) là \(\overrightarrow u = \left( {2;1;3} \right)\), vectơ chỉ phương của \(\Delta '\) là \(\overrightarrow {u'} = \left( {3;2; - 2} \right)\).

Đường thẳng \(\Delta \) đi qua \(A\left( {3; - 2;1} \right)\), đường thẳng \(\Delta '\) đi qua \(B\left( { - 2;3;1} \right)\).

Ta có \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left( { - 8;14;1} \right)\); \(\overrightarrow {AB} = \left( { - 5;5;0} \right)\). Suy ra \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] \cdot \overrightarrow {AB} = 110 \ne 0\).

Do đó \(\Delta \) và \(\Delta '\) chéo nhau.

b) Do (P) chứa \(\Delta \) và song song với đường thẳng \(\Delta '\) nên (P) có một vectơ pháp tuyến là \(\left[ {\overrightarrow u ,\overrightarrow {u'} } \right] = \left( { - 8;14;1} \right)\) và (P) chứa điểm \(A\left( {3; - 2;1} \right)\).

Phương trình mặt phẳng của (P) là \( - 8\left( {x - 3} \right) + 14\left( {y + 2} \right) + 1\left( {z - 1} \right) = 0 \Leftrightarrow - 8x + 14y + z + 51 = 0\).

Giải bài 5.42 trang 38 SBT Toán 12 Kết nối tri thức: Đề bài và Hướng dẫn giải chi tiết

Bài 5.42 trang 38 sách bài tập Toán 12 Kết nối tri thức yêu cầu chúng ta khảo sát hàm số và tìm các điểm cực trị. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các bước sau:

  1. Xác định tập xác định của hàm số: Tìm khoảng mà hàm số có nghĩa.
  2. Tính đạo hàm bậc nhất: Tính f'(x) để tìm các điểm dừng (điểm mà f'(x) = 0 hoặc không xác định).
  3. Lập bảng biến thiên: Xác định dấu của f'(x) trên các khoảng xác định để xác định khoảng hàm số đồng biến, nghịch biến.
  4. Tìm cực trị: Sử dụng dấu của f'(x) để xác định các điểm cực đại, cực tiểu.
  5. Khảo sát giới hạn và tiệm cận: Xác định giới hạn của hàm số khi x tiến tới vô cùng và các giá trị đặc biệt.
  6. Vẽ đồ thị hàm số: Dựa trên các thông tin đã thu thập để vẽ đồ thị hàm số.

Lời giải chi tiết bài 5.42 trang 38 SBT Toán 12 Kết nối tri thức

Để minh họa, chúng ta sẽ xét một ví dụ cụ thể. Giả sử hàm số cần khảo sát là:

f(x) = x3 - 3x2 + 2

Bước 1: Xác định tập xác định

Hàm số f(x) = x3 - 3x2 + 2 là một hàm đa thức, do đó tập xác định của hàm số là D = ℝ.

Bước 2: Tính đạo hàm bậc nhất

f'(x) = 3x2 - 6x

Bước 3: Tìm các điểm dừng

Giải phương trình f'(x) = 0:

3x2 - 6x = 0

3x(x - 2) = 0

Vậy, x = 0 hoặc x = 2 là các điểm dừng.

Bước 4: Lập bảng biến thiên

x-∞02+∞
f'(x)+-+
f(x)

Bước 5: Tìm cực trị

  • Tại x = 0, f'(x) đổi dấu từ dương sang âm, do đó hàm số đạt cực đại tại x = 0. Giá trị cực đại là f(0) = 2.
  • Tại x = 2, f'(x) đổi dấu từ âm sang dương, do đó hàm số đạt cực tiểu tại x = 2. Giá trị cực tiểu là f(2) = -2.

Bước 6: Kết luận

Hàm số f(x) = x3 - 3x2 + 2 đồng biến trên các khoảng (-∞, 0) và (2, +∞), nghịch biến trên khoảng (0, 2). Hàm số đạt cực đại tại x = 0 với giá trị là 2 và đạt cực tiểu tại x = 2 với giá trị là -2.

Lưu ý khi giải bài tập về khảo sát hàm số

  • Nắm vững các khái niệm về đạo hàm, cực trị, khoảng đồng biến, nghịch biến.
  • Thực hành giải nhiều bài tập khác nhau để làm quen với các dạng bài và rèn luyện kỹ năng.
  • Sử dụng máy tính cầm tay để hỗ trợ tính toán và vẽ đồ thị hàm số.

Hy vọng lời giải chi tiết này sẽ giúp các em hiểu rõ hơn về cách giải bài 5.42 trang 38 SBT Toán 12 Kết nối tri thức. Chúc các em học tập tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN