1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 2.4 trang 44 sách bài tập toán 12 - Kết nối tri thức

Giải bài 2.4 trang 44 sách bài tập toán 12 - Kết nối tri thức

Giải bài 2.4 trang 44 SBT Toán 12 - Kết nối tri thức

Chào mừng bạn đến với lời giải chi tiết bài 2.4 trang 44 sách bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng và dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.

Tusach.vn luôn đồng hành cùng bạn trên con đường chinh phục môn Toán.

Trong không gian, cho năm điểm phân biệt A, B, C, D, E. Chứng minh rằng: a) \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} = \overrightarrow {AE} - \overrightarrow {DE} \); b) \(\overrightarrow {AB} + \overrightarrow {DE} = \overrightarrow {AE} - \overrightarrow {BD} \); c) \(\overrightarrow {BC} + \overrightarrow {DE} = \overrightarrow {BE} - \overrightarrow {CD} \).

Đề bài

Trong không gian, cho năm điểm phân biệt A, B, C, D, E. Chứng minh rằng:

a) \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} = \overrightarrow {AE} - \overrightarrow {DE} \);

b) \(\overrightarrow {AB} + \overrightarrow {DE} = \overrightarrow {AE} - \overrightarrow {BD} \);

c) \(\overrightarrow {BC} + \overrightarrow {DE} = \overrightarrow {BE} - \overrightarrow {CD} \).

Phương pháp giải - Xem chi tiếtGiải bài 2.4 trang 44 sách bài tập toán 12 - Kết nối tri thức 1

Sử dụng phép cộng, trừ vectơ, tính chất của phép cộng, phép trừ đó (giao hoán, kết hợp), cộng hai vectơ đối với nhau. Ngoài ra còn cần lựa chọn điểm trung gian trong các điểm đã cho sẵn một cách phù hợp để xuất hiện các vectơ mình muốn và các vectơ đối để loại những vectơ không cần dùng đến. Cụ thể ta sẽ biến đổi một vế để đưa về vế còn lại, từ đó suy ra điều phải chứng minh.

Lời giải chi tiết

a) Ta có \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} = \overrightarrow {AC} + \overrightarrow {CD} = \overrightarrow {AD} = \overrightarrow {AE} + \overrightarrow {ED} = \overrightarrow {AE} - \overrightarrow {DE} \) (đ.p.c.m).

b) Ta có \(\overrightarrow {AB} + \overrightarrow {DE} = \overrightarrow {AE} + \overrightarrow {ED} + \overrightarrow {DB} + \overrightarrow {DE} = \overrightarrow {AE} + \left( {\overrightarrow {ED} + \overrightarrow {DE} } \right) + \overrightarrow {DB} = \overrightarrow {AE} + \overrightarrow {DB} = \overrightarrow {AE} - \overrightarrow {BD} \) (đ.p.c.m).

c) Ta có \(\overrightarrow {BC} + \overrightarrow {DE} = BE + EC + DC + CE = BE + \left( {EC + CE} \right) + DC = BE + DC = BE - CD\) (đ.p.c.m).

Giải bài 2.4 trang 44 SBT Toán 12 - Kết nối tri thức: Tổng quan

Bài 2.4 trang 44 sách bài tập Toán 12 Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, quy tắc tính đạo hàm, và các ứng dụng của đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững lý thuyết và kỹ năng tính đạo hàm là yếu tố then chốt để hoàn thành tốt bài tập này.

Nội dung bài 2.4 trang 44 SBT Toán 12 - Kết nối tri thức

Bài 2.4 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của các hàm số đơn thức, đa thức, và các hàm số phức tạp hơn.
  • Áp dụng quy tắc tính đạo hàm: Vận dụng các quy tắc như quy tắc cộng, trừ, nhân, chia, quy tắc hàm hợp để tính đạo hàm.
  • Giải phương trình đạo hàm: Tìm nghiệm của phương trình đạo hàm để xác định các điểm cực trị, điểm uốn của hàm số.
  • Ứng dụng đạo hàm: Sử dụng đạo hàm để giải các bài toán liên quan đến tốc độ thay đổi, tối ưu hóa, và các bài toán thực tế.

Lời giải chi tiết bài 2.4 trang 44 SBT Toán 12 - Kết nối tri thức

Để giúp bạn hiểu rõ hơn về cách giải bài 2.4 trang 44, chúng ta sẽ đi qua một ví dụ cụ thể:

Ví dụ:

Cho hàm số f(x) = x3 - 3x2 + 2. Tính f'(x).

Lời giải:

  1. Áp dụng quy tắc tính đạo hàm của tổng và hiệu: f'(x) = (x3)' - (3x2)' + (2)'
  2. Áp dụng quy tắc tính đạo hàm của lũy thừa: (x3)' = 3x2 và (3x2)' = 6x
  3. Đạo hàm của hằng số bằng 0: (2)' = 0
  4. Vậy, f'(x) = 3x2 - 6x

Mẹo giải bài tập đạo hàm hiệu quả

Để giải các bài tập về đạo hàm một cách hiệu quả, bạn nên:

  • Nắm vững lý thuyết: Hiểu rõ các định nghĩa, quy tắc tính đạo hàm và các ứng dụng của đạo hàm.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng và làm quen với các dạng bài tập.
  • Sử dụng công cụ hỗ trợ: Sử dụng máy tính cầm tay hoặc các phần mềm tính đạo hàm để kiểm tra kết quả và tiết kiệm thời gian.
  • Phân tích bài toán: Đọc kỹ đề bài, xác định rõ yêu cầu và các thông tin đã cho.
  • Kiểm tra lại kết quả: Sau khi giải xong, hãy kiểm tra lại kết quả để đảm bảo tính chính xác.

Tusach.vn - Nguồn tài liệu học Toán uy tín

Tusach.vn là một website cung cấp đầy đủ các tài liệu học Toán, bao gồm sách giáo khoa, sách bài tập, đề thi, và lời giải chi tiết. Chúng tôi cam kết cung cấp cho bạn những thông tin chính xác, hữu ích và cập nhật nhất. Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu học Toán hữu ích khác!

Bảng tổng hợp các công thức đạo hàm thường gặp

Hàm sốĐạo hàm
f(x) = c (hằng số)f'(x) = 0
f(x) = xnf'(x) = nxn-1
f(x) = sin(x)f'(x) = cos(x)
f(x) = cos(x)f'(x) = -sin(x)

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN