Chào mừng các em học sinh đến với lời giải chi tiết bài 2.22 trang 49 sách bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ cung cấp đáp án chính xác và phương pháp giải bài tập một cách dễ hiểu nhất.
Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất.
Trong không gian (Oxyz), cho hình hộp chữ nhật (ABCD.A'B'C'D') có đỉnh (A) trùng với gốc (O) và các đỉnh (D,B,A') có tọa độ lần lượt là (left( {3;0;0} right)), (left( {0; - 1;0} right)), (left( {0;0; - 2} right)). Xác định tọa độ các đỉnh còn lại của hình hộp chữ nhật.
Đề bài
Trong không gian \(Oxyz\), cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có đỉnh \(A\) trùng với gốc \(O\) và các đỉnh \(D,B,A'\) có tọa độ lần lượt là \(\left( {3;0;0} \right)\), \(\left( {0; - 1;0} \right)\), \(\left( {0;0; - 2} \right)\). Xác định tọa độ các đỉnh còn lại của hình hộp chữ nhật.
Phương pháp giải - Xem chi tiết
Xác định xem điểm nào thuộc tia nào trong ba tia \(Ox\), \(Oy\), \(Oz\). Sau đó tìm các cặp vectơ bằng nhau để giải và tìm tọa độ các đỉnh.
Lời giải chi tiết
Theo đề bài, ta có \(D\) thuộc tia \(Ox\), \(B\) thuộc tia \(Oy\) và \(A'\) thuộc tia \(Oz\).
Ta có :
\(\overrightarrow {AD} = \overrightarrow {BC} \Leftrightarrow \left\{ \begin{array}{l}3 = {x_C}\\0 = {y_C} + 1\\0 = {z_C}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} = 3\\{y_C} = - 1\\{z_C} = 0\end{array} \right. \Leftrightarrow C\left( {3; - 1;0} \right)\).
\(\overrightarrow {AA'} = \overrightarrow {DD'} \Leftrightarrow \left\{ \begin{array}{l}0 = {x_{D'}} - 3\\0 = {y_{D'}}\\ - 2 = {z_{D'}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{D'}} = 3\\{y_{D'}} = 0\\{z_{D'}} = - 2\end{array} \right. \Leftrightarrow D'\left( {3;0; - 2} \right)\).
\(\overrightarrow {A'B'} = \overrightarrow {AB} \Leftrightarrow \left\{ \begin{array}{l}{x_{B'}} = 0\\{y_{B'}} = - 1\\{z_{B'}} + 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{B'}} = 0\\{y_{B'}} = - 1\\{z_{B'}} = - 2\end{array} \right. \Leftrightarrow B'\left( {0; - 1; - 2} \right)\).
\(\overrightarrow {CC'} = \overrightarrow {AA'} \Leftrightarrow \left\{ \begin{array}{l}{x_{C'}} - 3 = 0\\{y_{C'}} + 1 = 0\\{z_{C'}} = - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{C'}} = 3\\{y_{C'}} = - 1\\{z_{C'}} = - 2\end{array} \right. \Leftrightarrow C'\left( {3; - 1; - 2} \right)\).
Vậy \(C\left( {3; - 1;0} \right)\), \(B'\left( {0; - 1; - 2} \right)\), \(C'\left( {3; - 1; - 2} \right)\) và \(D'\left( {3;0; - 2} \right)\).
Bài 2.22 trang 49 sách bài tập Toán 12 Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Cụ thể, bài tập thường liên quan đến việc tìm đạo hàm, xét dấu đạo hàm để xác định tính đơn điệu của hàm số, hoặc tìm cực trị của hàm số.
Bài 2.22 thường bao gồm một hoặc nhiều câu hỏi nhỏ, yêu cầu học sinh thực hiện các bước sau:
Để giúp các em hiểu rõ hơn về cách giải bài 2.22 trang 49 SBT Toán 12 Kết nối tri thức, chúng ta sẽ cùng nhau phân tích một ví dụ cụ thể:
Giả sử bài tập yêu cầu tìm đạo hàm của hàm số f(x) = x3 - 3x2 + 2.
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| f'(x) | + | - | + | |
| f(x) | Đồng biến | Nghịch biến | Đồng biến |
Tusach.vn tự hào là một trong những website cung cấp lời giải bài tập Toán 12 Kết nối tri thức nhanh chóng, chính xác và dễ hiểu nhất. Chúng tôi luôn cập nhật những lời giải mới nhất và cung cấp nhiều tài liệu học tập hữu ích khác để giúp các em học tập tốt hơn. Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác nhé!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập