1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 2.22 trang 49 sách bài tập toán 12 - Kết nối tri thức

Giải bài 2.22 trang 49 sách bài tập toán 12 - Kết nối tri thức

Giải bài 2.22 trang 49 SBT Toán 12 Kết nối tri thức

Chào mừng các em học sinh đến với lời giải chi tiết bài 2.22 trang 49 sách bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ cung cấp đáp án chính xác và phương pháp giải bài tập một cách dễ hiểu nhất.

Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất.

Trong không gian (Oxyz), cho hình hộp chữ nhật (ABCD.A'B'C'D') có đỉnh (A) trùng với gốc (O) và các đỉnh (D,B,A') có tọa độ lần lượt là (left( {3;0;0} right)), (left( {0; - 1;0} right)), (left( {0;0; - 2} right)). Xác định tọa độ các đỉnh còn lại của hình hộp chữ nhật.

Đề bài

Trong không gian \(Oxyz\), cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có đỉnh \(A\) trùng với gốc \(O\) và các đỉnh \(D,B,A'\) có tọa độ lần lượt là \(\left( {3;0;0} \right)\), \(\left( {0; - 1;0} \right)\), \(\left( {0;0; - 2} \right)\). Xác định tọa độ các đỉnh còn lại của hình hộp chữ nhật.

Phương pháp giải - Xem chi tiếtGiải bài 2.22 trang 49 sách bài tập toán 12 - Kết nối tri thức 1

Xác định xem điểm nào thuộc tia nào trong ba tia \(Ox\), \(Oy\), \(Oz\). Sau đó tìm các cặp vectơ bằng nhau để giải và tìm tọa độ các đỉnh.

Lời giải chi tiết

Theo đề bài, ta có \(D\) thuộc tia \(Ox\), \(B\) thuộc tia \(Oy\) và \(A'\) thuộc tia \(Oz\).

Ta có :

\(\overrightarrow {AD} = \overrightarrow {BC} \Leftrightarrow \left\{ \begin{array}{l}3 = {x_C}\\0 = {y_C} + 1\\0 = {z_C}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} = 3\\{y_C} = - 1\\{z_C} = 0\end{array} \right. \Leftrightarrow C\left( {3; - 1;0} \right)\).

\(\overrightarrow {AA'} = \overrightarrow {DD'} \Leftrightarrow \left\{ \begin{array}{l}0 = {x_{D'}} - 3\\0 = {y_{D'}}\\ - 2 = {z_{D'}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{D'}} = 3\\{y_{D'}} = 0\\{z_{D'}} = - 2\end{array} \right. \Leftrightarrow D'\left( {3;0; - 2} \right)\).

\(\overrightarrow {A'B'} = \overrightarrow {AB} \Leftrightarrow \left\{ \begin{array}{l}{x_{B'}} = 0\\{y_{B'}} = - 1\\{z_{B'}} + 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{B'}} = 0\\{y_{B'}} = - 1\\{z_{B'}} = - 2\end{array} \right. \Leftrightarrow B'\left( {0; - 1; - 2} \right)\).

\(\overrightarrow {CC'} = \overrightarrow {AA'} \Leftrightarrow \left\{ \begin{array}{l}{x_{C'}} - 3 = 0\\{y_{C'}} + 1 = 0\\{z_{C'}} = - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{C'}} = 3\\{y_{C'}} = - 1\\{z_{C'}} = - 2\end{array} \right. \Leftrightarrow C'\left( {3; - 1; - 2} \right)\).

Vậy \(C\left( {3; - 1;0} \right)\), \(B'\left( {0; - 1; - 2} \right)\), \(C'\left( {3; - 1; - 2} \right)\) và \(D'\left( {3;0; - 2} \right)\).

Giải bài 2.22 trang 49 SBT Toán 12 Kết nối tri thức: Tổng quan

Bài 2.22 trang 49 sách bài tập Toán 12 Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Cụ thể, bài tập thường liên quan đến việc tìm đạo hàm, xét dấu đạo hàm để xác định tính đơn điệu của hàm số, hoặc tìm cực trị của hàm số.

Nội dung bài 2.22 trang 49 SBT Toán 12 Kết nối tri thức

Bài 2.22 thường bao gồm một hoặc nhiều câu hỏi nhỏ, yêu cầu học sinh thực hiện các bước sau:

  1. Xác định hàm số: Đọc kỹ đề bài để xác định chính xác hàm số cần xét.
  2. Tính đạo hàm: Sử dụng các quy tắc tính đạo hàm đã học để tìm đạo hàm của hàm số.
  3. Xét dấu đạo hàm: Xác định khoảng mà đạo hàm dương, âm hoặc bằng không.
  4. Kết luận về tính đơn điệu: Dựa vào dấu của đạo hàm để kết luận về tính đơn điệu của hàm số trên các khoảng xác định.
  5. Tìm cực trị (nếu có): Giải phương trình đạo hàm bằng 0 để tìm các điểm cực trị của hàm số.

Lời giải chi tiết bài 2.22 trang 49 SBT Toán 12 Kết nối tri thức

Để giúp các em hiểu rõ hơn về cách giải bài 2.22 trang 49 SBT Toán 12 Kết nối tri thức, chúng ta sẽ cùng nhau phân tích một ví dụ cụ thể:

Ví dụ minh họa

Giả sử bài tập yêu cầu tìm đạo hàm của hàm số f(x) = x3 - 3x2 + 2.

  1. Tính đạo hàm: f'(x) = 3x2 - 6x
  2. Xét dấu đạo hàm: 3x2 - 6x = 0 => x(3x - 6) = 0 => x = 0 hoặc x = 2
  3. Lập bảng xét dấu:
    x-∞02+∞
    f'(x)+-+
    f(x)Đồng biếnNghịch biếnĐồng biến
  4. Kết luận: Hàm số f(x) đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2).

Mẹo giải bài tập đạo hàm hiệu quả

  • Nắm vững các quy tắc tính đạo hàm: Đây là nền tảng quan trọng để giải quyết mọi bài tập về đạo hàm.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau sẽ giúp các em làm quen với các dạng bài và rèn luyện kỹ năng giải quyết vấn đề.
  • Sử dụng các công cụ hỗ trợ: Các công cụ tính đạo hàm trực tuyến có thể giúp các em kiểm tra lại kết quả và tiết kiệm thời gian.
  • Hiểu rõ bản chất của đạo hàm: Đạo hàm thể hiện tốc độ thay đổi của hàm số, do đó việc hiểu rõ bản chất của đạo hàm sẽ giúp các em giải quyết bài tập một cách linh hoạt và sáng tạo.

Tusach.vn – Người bạn đồng hành tin cậy

Tusach.vn tự hào là một trong những website cung cấp lời giải bài tập Toán 12 Kết nối tri thức nhanh chóng, chính xác và dễ hiểu nhất. Chúng tôi luôn cập nhật những lời giải mới nhất và cung cấp nhiều tài liệu học tập hữu ích khác để giúp các em học tập tốt hơn. Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác nhé!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN