Chào mừng bạn đến với lời giải chi tiết bài 1.25 trang 19 sách bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng và dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Tusach.vn luôn đồng hành cùng bạn trên con đường chinh phục môn Toán.
Cho hàm số (y = fleft( x right)) có bảng biến thiên như sau:
Đề bài
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:

Phương pháp giải - Xem chi tiết
Quan sát bảng biến thiên, tính các giới hạn theo định nghĩa tiệm cận để tìm các tiệm cận đó. Ví dụ tìm tiệm cận đứng thì tìm giới hạn tại đâu có kết quả bằng \(\infty \), tìm tiệm cận đứng thì tìm giá trị \(y\) khi \(x \to \infty \), kết quả có trên hình vẽ bảng biến thiên.
Lời giải chi tiết
Từ bảng biến thiên ta thấy \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 1\) và \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = - 1\).
Do đó \(\mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = \frac{1}{3}\) và \(\mathop {\lim }\limits_{x \to - \infty } g\left( x \right) = 1\).
Vậy đồ thị hàm số \(g\left( x \right)\) có hau tiệm cận ngang là các đường thẳng \(y = 1\) và \(y = \frac{1}{3}\).
Bài 1.25 trang 19 sách bài tập Toán 12 Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Việc nắm vững các công thức đạo hàm cơ bản và kỹ năng tính đạo hàm là yếu tố then chốt để hoàn thành bài tập này một cách hiệu quả.
Bài 1.25 thường xoay quanh việc tính đạo hàm của các hàm số lượng giác, hàm số mũ, hàm số logarit, hoặc các hàm số phức tạp hơn được xây dựng từ các hàm số cơ bản này. Đôi khi, bài tập còn yêu cầu học sinh tìm đạo hàm cấp hai, đạo hàm của hàm hợp, hoặc áp dụng đạo hàm để giải các bài toán liên quan đến cực trị, khoảng đơn điệu của hàm số.
Để giải bài 1.25 trang 19 SBT Toán 12 Kết nối tri thức, chúng ta cần thực hiện các bước sau:
Ví dụ minh họa:
Giả sử bài tập yêu cầu tính đạo hàm của hàm số f(x) = 2sin(x) + 3x2 - 1.
Ta thực hiện như sau:
Vậy, f'(x) = 2cos(x) + 6x.
Hy vọng với lời giải chi tiết và các mẹo giải bài tập đạo hàm hiệu quả trên đây, bạn đã có thể tự tin giải bài 1.25 trang 19 SBT Toán 12 Kết nối tri thức. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập