Chào mừng các em học sinh đến với lời giải chi tiết bài 4.11 trang 12 sách bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ cung cấp đáp án chính xác và phương pháp giải bài tập một cách dễ hiểu nhất.
Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em nắm vững kiến thức và đạt kết quả tốt nhất.
Sử dụng ý nghĩa hình học của tích phân, tính: a) (intlimits_0^3 {left( {2x + 1} right)dx} ); b) (intlimits_0^4 {sqrt {16 - {x^2}} dx} ).
Đề bài
Sử dụng ý nghĩa hình học của tích phân, tính:
a) \(\int\limits_0^3 {\left( {2x + 1} \right)dx} \);
b) \(\int\limits_0^4 {\sqrt {16 - {x^2}} dx} \).
Phương pháp giải - Xem chi tiết
Ý a: Giá trị tích phân là diện tích của hình vẽ giới hạn bởi hàm \(2x + 1\) và hai đường thẳng xác định bởi giá trị hai cận do hàm không âm trên \(\left[ {0;3} \right]\).
Xác định hình vẽ đó và tính diện tích bằng công thức hình học.
Ý b: Giá trị tích phân là diện tích của hình vẽ giới hạn bởi hàm \(\sqrt {16 - {x^2}} \) và hai đường thẳng xác định bởi giá trị hai cận do hàm không âm trên \(\left[ {0;4} \right]\).
Xác định hình vẽ đó và tính diện tích bằng công thức hình học.
Lời giải chi tiết
a) Ta có hàm số \(f\left( x \right) = 2x + 1\) không âm trên đoạn \(\left[ {0;3} \right]\). Do đó tích phân \(\int\limits_0^3 {\left( {2x + 1} \right)dx} \) là
diện tích của hình vẽ giới hạn bởi đồ thị \(y = f\left( x \right)\) và hai đường thẳng \(x = 0\) (trục \(Ox\)) và
\(x = 3\) như hình vẽ bên.Ta cần tính diện tích hình thang vuông có
đáy lớn là 7, đáy bé là 1 và chiều cao là 3.
Suy ra \(\int\limits_0^3 {\left( {2x + 1} \right)dx} = \frac{1}{2} \cdot \left( {1 + 7} \right) \cdot 3 = 12\).

b) Ta có \(\int\limits_0^4 {\sqrt {16 - {x^2}} dx} \).
Ta có hàm số \(f\left( x \right) = \sqrt {16 - {x^2}} \) không âm trên đoạn \(\left[ {0;4} \right]\). Do đó tích phân \(\int\limits_0^3 {\left( {2x + 1} \right)dx} \) là diện tích của hình vẽ giới hạn bởi đồ thị \(y = f\left( x \right)\) và hai đường thẳng \(x = 0\) (trục \(Ox\)) và \(x = 4\) như hình vẽ bên.
Ta cần tính diện tích một phần tư đường tròn có bán kính là 4, tâm O nằm ở góc phần tư thứ I. Suy ra \(\int\limits_0^4 {\sqrt {16 - {x^2}} dx} = \frac{1}{4} \cdot \pi \cdot {4^2} = 4\pi \).

Bài 4.11 trang 12 sách bài tập Toán 12 Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế, hoặc chứng minh các đẳng thức liên quan đến đạo hàm.
Thông thường, bài 4.11 sẽ yêu cầu:
Để giải quyết bài tập 4.11 một cách hiệu quả, các em cần nắm vững các kiến thức sau:
(Ở đây sẽ là lời giải chi tiết của bài tập 4.11. Ví dụ):
Bài 4.11: Cho hàm số y = x3 - 3x2 + 2. Tìm đạo hàm của hàm số và xác định các điểm cực trị.
Lời giải:
Đạo hàm của hàm số là: y' = 3x2 - 6x.
Để tìm các điểm cực trị, ta giải phương trình y' = 0:
3x2 - 6x = 0 ⇔ 3x(x - 2) = 0 ⇔ x = 0 hoặc x = 2.
Ta có bảng biến thiên:
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| y' | + | - | + | |
| y | ↗ | ↘ | ↗ |
Vậy hàm số đạt cực đại tại x = 0, ycđ = 2 và đạt cực tiểu tại x = 2, yct = -2.
Để củng cố kiến thức, các em có thể luyện tập thêm các bài tập tương tự trong sách bài tập Toán 12 Kết nối tri thức và các đề thi thử Toán 12.
Bài 4.11 trang 12 SBT Toán 12 Kết nối tri thức là một bài tập quan trọng giúp các em hiểu sâu hơn về đạo hàm và ứng dụng của đạo hàm. Hy vọng với lời giải chi tiết và phương pháp giải bài tập được trình bày trong bài viết này, các em sẽ tự tin hơn khi giải các bài tập tương tự.
Tusach.vn luôn cập nhật lời giải các bài tập Toán 12 mới nhất. Hãy truy cập website của chúng tôi để được hỗ trợ tốt nhất!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập