Chào mừng bạn đến với lời giải chi tiết bài 2.28 trang 54 sách bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng và dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
tusach.vn luôn đồng hành cùng bạn trên con đường chinh phục môn Toán.
Cho tứ diện (ABCD). Trọng tâm (G) của tứ diện là điểm duy nhất thỏa mãn đẳng thức (overrightarrow {GA} + overrightarrow {GB} + overrightarrow {GC} + overrightarrow {GD} = overrightarrow 0 ). Chứng minh rằng tọa độ của điểm (G) được cho bởi công thức: ({x_G} = frac{{{x_A} + {x_B} + {x_C} + {x_D}}}{4};{y_G} = frac{{{y_A} + {y_B} + {y_C} + {y_D}}}{4};{z_G} = frac{{{z_A} + {z_B} + {z_C} + {z_D}}}{4}.)
Đề bài
Cho tứ diện \(ABCD\). Trọng tâm \(G\) của tứ diện là điểm duy nhất thỏa mãn đẳng thức
\(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \). Chứng minh rằng tọa độ của điểm \(G\) được cho bởi công thức:
\({x_G} = \frac{{{x_A} + {x_B} + {x_C} + {x_D}}}{4};{y_G} = \frac{{{y_A} + {y_B} + {y_C} + {y_D}}}{4};{z_G} = \frac{{{z_A} + {z_B} + {z_C} + {z_D}}}{4}.\)
Phương pháp giải - Xem chi tiết
Sử dụng biến đổi tương đương, từng bước biến đổi đẳng thức ban đầu (đẳng thức về khái niệm trọng tâm của tứ diện) để dẫn đến công thức cần chứng minh.
Lời giải chi tiết
\(\begin{array}{l}\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \left( \begin{array}{l}{x_A} - {x_G} + {x_B} - {x_G} + {x_C} - {x_G} + {x_D} - {x_G};{y_A} - {y_G} + {y_B} - {y_G} + {y_C} - {y_G} + {y_D} - {y_G};\\{z_A} - {z_G} + {z_B} - {z_G} + {z_C} - {z_G} + {z_D} - {z_G}\end{array} \right)\\ = \left( {{x_A} + {x_B} + {x_C} + {x_D} - 4{x_G};{y_A} + {y_B} + {y_C} + {y_D} - 4{y_G};{z_A} + {z_B} + {z_C} + {z_D} - 4{z_G}} \right)\end{array}\)
Ta có \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \Leftrightarrow \left\{ \begin{array}{l}{x_A} + {x_B} + {x_C} + {x_D} - 4{x_G} = 0\\{y_A} + {y_B} + {y_C} + {y_D} - 4{y_G} = 0\\{z_A} + {z_B} + {z_C} + {z_D} - 4{z_G} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + {x_C} + {x_D}}}{4}\\{y_G} = \frac{{{y_A} + {y_B} + {y_C} + {y_D}}}{4}\\{z_G} = \frac{{{z_A} + {z_B} + {z_C} + {z_D}}}{4}\end{array} \right.\)
Suy ra tọa độ \(G\) được xác định theo công thức \({x_G} = \frac{{{x_A} + {x_B} + {x_C} + {x_D}}}{4};{y_G} = \frac{{{y_A} + {y_B} + {y_C} + {y_D}}}{4};\)
\({z_G} = \frac{{{z_A} + {z_B} + {z_C} + {z_D}}}{4}\)(điều phải chứng minh).
Trước khi đi vào giải chi tiết, chúng ta cùng xem lại đề bài 2.28 trang 54 sách bài tập Toán 12 Kết nối tri thức:
(Đề bài sẽ được chèn vào đây - ví dụ: Cho hàm số f(x) = x^3 - 3x + 2. Tìm các điểm cực trị của hàm số.)
Để giải bài toán này, chúng ta sẽ sử dụng các bước sau:
(Lời giải chi tiết sẽ được trình bày ở đây, bao gồm các bước tính toán, giải thích rõ ràng và kết luận.)
Ví dụ, nếu đề bài là: Cho hàm số f(x) = x^3 - 3x + 2. Tìm các điểm cực trị của hàm số.
Lời giải:
f'(x) = 3x2 - 3
3x2 - 3 = 0 ⇔ x2 = 1 ⇔ x = ±1
Xét khoảng (-∞; -1): Chọn x = -2, f'(-2) = 3(-2)2 - 3 = 9 > 0
Xét khoảng (-1; 1): Chọn x = 0, f'(0) = 3(0)2 - 3 = -3 < 0
Xét khoảng (1; +∞): Chọn x = 2, f'(2) = 3(2)2 - 3 = 9 > 0
Vậy, hàm số đạt cực đại tại x = -1 và cực tiểu tại x = 1.
f(-1) = (-1)3 - 3(-1) + 2 = 4
f(1) = (1)3 - 3(1) + 2 = 0
Kết luận: Hàm số f(x) = x3 - 3x + 2 đạt cực đại tại điểm (-1; 4) và cực tiểu tại điểm (1; 0).
Để củng cố kiến thức, bạn có thể luyện tập thêm với các bài tập tương tự trong sách bài tập Toán 12 Kết nối tri thức. Đừng quên tham khảo các bài giải khác trên tusach.vn để hiểu rõ hơn về các phương pháp giải toán.
Bài viết này đã cung cấp lời giải chi tiết và phương pháp giải bài 2.28 trang 54 sách bài tập Toán 12 Kết nối tri thức. Hy vọng rằng, với những kiến thức này, bạn sẽ tự tin hơn trong việc giải các bài tập Toán 12 và đạt kết quả tốt nhất.
Chúc bạn học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập