Chào mừng bạn đến với lời giải chi tiết bài 1.35 trang 25 sách bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp bạn nắm vững kiến thức và tự tin hơn trong quá trình học tập.
Chúng tôi luôn cố gắng cung cấp những lời giải chính xác và đầy đủ nhất, đồng thời giải thích rõ ràng từng bước để bạn có thể hiểu sâu sắc về bài toán.
Gia tốc \(a\left( t \right)\) của một vật chuyển động, \(t\) tính theo giây, từ giây thứ nhất đến giây thứ \(5\) là một hàm liên tục có đồ thị như sau: a) Lập bảng biến thiên của hàm vận tốc \(y = v\left( t \right)\) của vật, với \(t \in \left[ {1;5} \right]\). b) Tại thời điểm nào vật chuyển động với vận tốc lớn nhất?
Đề bài
Gia tốc \(a\left( t \right)\) của một vật chuyển động, \(t\) tính theo giây, từ giây thứ nhất đến giây thứ \(5\) là một hàm liên tục có đồ thị như sau:

a) Lập bảng biến thiên của hàm vận tốc \(y = v\left( t \right)\) của vật, với \(t \in \left[ {1;5} \right]\).
b) Tại thời điểm nào vật chuyển động với vận tốc lớn nhất?
Phương pháp giải - Xem chi tiết
Ý a:
+ \(a\left( t \right) = v'\left( t \right)\). Từ đồ thị xét dấu \(a\left( t \right)\) trên khoảng \(t \in \left[ {1;5} \right]\)
+ Lập bảng biến thiên của \(v\left( t \right)\).
Ý b: Từ bảng biến thiên suy ra được giá trị lớn nhất của vận tốc đạt được tại thời điểm nào.
Lời giải chi tiết
a) Ta có \(a\left( t \right) = v'\left( t \right)\).
Từ đồ thị ta có \(a\left( t \right) = 0 \Leftrightarrow t = 3\).
Ta thấy \(a\left( t \right) > 0\) với mọi \(t \in \left( {1;3} \right)\), \(a\left( t \right) < 0\) với mọi \(t \in \left( {3;5} \right)\).
Lập bảng biến thiên

b) Từ bảng biến thiên suy ra vận tốc lớn nhất đạt tại giây thứ \(3\) (\(t = 3\)).
Bài 1.35 trang 25 sách bài tập Toán 12 Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán liên quan đến tiếp tuyến của đồ thị hàm số, cực trị của hàm số, hoặc các bài toán ứng dụng khác.
Thông thường, bài 1.35 sẽ bao gồm một hoặc nhiều câu hỏi nhỏ, yêu cầu học sinh:
Để giải quyết bài 1.35 một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
(Giả sử bài 1.35 có nội dung cụ thể như sau: Tìm đạo hàm của hàm số f(x) = x3 - 3x2 + 2x - 1)
Lời giải:
Để tìm đạo hàm của hàm số f(x) = x3 - 3x2 + 2x - 1, ta áp dụng quy tắc tính đạo hàm của tổng và hiệu, cũng như quy tắc tính đạo hàm của lũy thừa:
f'(x) = (x3)' - (3x2)' + (2x)' - (1)'
f'(x) = 3x2 - 6x + 2 - 0
f'(x) = 3x2 - 6x + 2
Vậy, đạo hàm của hàm số f(x) = x3 - 3x2 + 2x - 1 là f'(x) = 3x2 - 6x + 2.
Để củng cố kiến thức và rèn luyện kỹ năng giải toán, bạn có thể tham khảo các bài tập tương tự trong sách bài tập Toán 12 Kết nối tri thức, hoặc trên các trang web học toán trực tuyến.
Bài 1.35 trang 25 SBT Toán 12 Kết nối tri thức là một bài tập quan trọng giúp bạn hiểu sâu hơn về đạo hàm và các ứng dụng của nó. Hy vọng với lời giải chi tiết và phương pháp giải được trình bày trong bài viết này, bạn sẽ tự tin hơn trong quá trình học tập và giải quyết các bài toán tương tự.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập