Chào mừng các em học sinh đến với lời giải chi tiết bài 1.48 trang 32 sách bài tập Toán 12 Kết nối tri thức. Bài tập này thuộc chương trình học Toán 12, tập trung vào việc rèn luyện kỹ năng giải quyết các bài toán liên quan đến đạo hàm và ứng dụng của đạo hàm.
tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp lời giải chính xác, dễ hiểu và các kiến thức bổ trợ cần thiết.
Một công ty ước tính rằng chi phí (C) (USD) để sản xuất (x) đơn vị sản phẩm có thể được mô hình hóa bằng công thức (C = 800 + 0,04x + 0,0002{x^2}). Tìm mức sản xuất sao cho chi phí trung bình (overline C left( x right) = frac{{Cleft( x right)}}{x}) cho mỗi đơn vị hàng hóa là nhỏ nhất.
Đề bài
Một công ty ước tính rằng chi phí \(C\) (USD) để sản xuất \(x\) đơn vị sản phẩm có thể được mô hình hóa bằng công thức
\(C = 800 + 0,04x + 0,0002{x^2}\).
Tìm mức sản xuất sao cho chi phí trung bình \(\overline C \left( x \right) = \frac{{C\left( x \right)}}{x}\) cho mỗi đơn vị hàng hóa là nhỏ nhất.
Phương pháp giải - Xem chi tiết
+ Viết công thức \(\overline C \left( x \right)\).
+ Tìm \(x > 0\) để \(\overline C \left( x \right)\) nhỏ nhất.
Lời giải chi tiết
Ta có \(\overline C \left( x \right) = \frac{{800 + 0,04x + 0,0002{x^2}}}{x} = \frac{{800}}{x} + 0,04 + 0,0002x\), \(x > 0\)
Chi phí trung bình nhỏ nhất khi \(\overline C \left( x \right)\) đạt giá trị nhỏ nhất, ta cần tìm \(x\) để \(\overline C \left( x \right)\) nhỏ nhất.
Ta có \(\overline {C'} \left( x \right) = \frac{{ - 800}}{{{x^2}}} + 0,0002 = \frac{{ - 800 + 0,0002{x^2}}}{{{x^2}}}\).
Khi đó \(\overline {C'} \left( x \right) = 0 \Leftrightarrow \frac{{ - 800 + 0,0002{x^2}}}{{{x^2}}} = 0 \Leftrightarrow - 800 + 0,0002{x^2} = 0 \Leftrightarrow x = 2000\) vì \(x > 0\).
Lập bảng biến thiên

Từ bảng biến thiên suy ra \(\overline C \left( x \right)\) đạt giá trị nhỏ nhất khi \(x = 2000\).
Vậy với mức sản xuất \(2000\) thì chi phí trung bình cho mỗi đơn vị hàng hóa là nhỏ nhất.
Bài 1.48 trang 32 sách bài tập Toán 12 Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị của hàm số. Để giải bài tập này một cách hiệu quả, các em cần nắm vững các khái niệm và công thức liên quan.
Bài tập yêu cầu học sinh tìm cực trị của hàm số. Cụ thể, bài tập thường cho một hàm số và yêu cầu xác định các điểm cực đại, cực tiểu của hàm số đó. Để làm được điều này, các em cần thực hiện các bước sau:
Để minh họa, chúng ta sẽ cùng giải một ví dụ cụ thể. Giả sử hàm số cần xét là f(x) = x3 - 3x2 + 2.
Để luyện tập thêm, các em có thể tham khảo các bài tập tương tự trong sách bài tập Toán 12 Kết nối tri thức và các đề thi thử Toán 12. Ngoài ra, các em cũng có thể tìm kiếm các tài liệu tham khảo trực tuyến hoặc tham gia các khóa học luyện thi Toán 12 để nâng cao kiến thức và kỹ năng.
tusach.vn hy vọng rằng lời giải chi tiết bài 1.48 trang 32 SBT Toán 12 Kết nối tri thức này sẽ giúp các em hiểu rõ hơn về phương pháp giải và tự tin hơn trong quá trình học tập. Chúc các em học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập