1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 1.44 trang 31 sách bài tập toán 12 - Kết nối tri thức

Giải bài 1.44 trang 31 sách bài tập toán 12 - Kết nối tri thức

Giải bài 1.44 trang 31 SBT Toán 12 - Kết nối tri thức

Chào mừng bạn đến với lời giải chi tiết bài 1.44 trang 31 sách bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ cung cấp phương pháp giải bài tập một cách dễ hiểu, giúp bạn nắm vững kiến thức và tự tin làm bài tập.

Chúng tôi luôn cố gắng cung cấp nội dung chính xác và cập nhật nhất để hỗ trợ quá trình học tập của bạn.

Một hòn đảo nhỏ cách điểm P trên bờ biển khoảng (3) km, một thị trấn ở điểm A cách điểm P (12) km (xem hình vẽ). Nếu một người trên đảo chèo thuyền với vận tốc (2,5) km/h và đi bộ với vận tốc (4) km/h thì thuyền nên neo đậu ở vị trí nào trên đoạn PA để người đó đến thị trấn trong thời gian ngắn nhất?

Đề bài

Một hòn đảo nhỏ cách điểm P trên bờ biển khoảng \(3\) km, một thị trấn ở điểm A cách điểm P \(12\) km (xem hình vẽ). Nếu một người trên đảo chèo thuyền với vận tốc \(2,5\) km/h và đi bộ với vận tốc \(4\) km/h thì thuyền nên neo đậu ở vị trí nào trên đoạn PA để người đó đến thị trấn trong thời gian ngắn nhất?

Giải bài 1.44 trang 31 sách bài tập toán 12 - Kết nối tri thức 1

Phương pháp giải - Xem chi tiếtGiải bài 1.44 trang 31 sách bài tập toán 12 - Kết nối tri thức 2

+ Đặt ẩn và điều kiện cho ẩn biểu diễn khoảng cách từ A đến vị trí thuyền neo đậu trên đoạn PA.

+ Biểu diễn tổng quãng đường mà người đó phải di chuyển theo x từ đó biểu diễn tổng thời gian.

+ Tìm giá trị nhỏ nhất của tổng thời gian đó (đưa về bài toán tìm giá trị nhỏ nhất trên đoạn đã học).

Lời giải chi tiết

Giải bài 1.44 trang 31 sách bài tập toán 12 - Kết nối tri thức 3

Gọi vị trí hòn đảo là B và vị trí thuyền neo đậu trên bờ là C.

Ta cần tìm vị trí điểm C trên đoạn PA sao cho thời gian thuyền đi từ đảo vào bờ (đoạn BC) và đi bộ tiếp từ C đến thị trấn A (đoạn CA) là ngắn nhất.

Gọi đoạn PC = x (km) với \(0 \le x \le 12\).

Áp dụng định lý Pythagore trong tam giác BPC vuông tại P có: \(BC = \sqrt {{x^2} + 9} \) (km).

Thuyền đi với vận tốc 2,5 km/h nên thời gian đi hết đoạn BC là \(\frac{{\sqrt {{x^2} + 9} }}{{2,5}}\) (giờ).

Ta có: AC = PA – x = 12 – x (km).

Người đi bộ với vận tốc 4 km/h nên thời gian đi hết đoạn AC là \(\frac{{12 - x}}{4}\) (giờ).

Tổng thời gian người đó đi từ đảo đến thị trấn A là: \(T(x) = \frac{{\sqrt {{x^2} + 9} }}{{2,5}} + \frac{{12 - x}}{4}\) (giờ).

Bài toán trở thành tìm giá trị nhỏ nhất của hàm T(x) trên đoạn [0;12].

Ta có: \(T'(x) = \frac{{2x}}{{5\sqrt {{x^2} + 9} }} - \frac{1}{4}\).

\(T'(x) = 0 \Leftrightarrow \frac{{2x}}{{5\sqrt {{x^2} + 9} }} - \frac{1}{4} = 0 \Leftrightarrow 8x = 5\sqrt {{x^2} + 9} \).

Giải phương trình trên ta được \(x = \frac{{5\sqrt {39} }}{{13}} \approx 2,4\) là giá trị thỏa mãn điều kiện.

Bảng biến thiên:

Giải bài 1.44 trang 31 sách bài tập toán 12 - Kết nối tri thức 4

Vậy điểm neo đậu thuyền trên đoạn PA cách P khoảng 2,4 km để thời gian di chuyển là ngắn nhất.

Giải bài 1.44 trang 31 SBT Toán 12 - Kết nối tri thức: Tổng quan

Bài 1.44 trang 31 sách bài tập Toán 12 Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế, cụ thể là tìm đạo hàm của hàm số và sử dụng đạo hàm để khảo sát hàm số.

Nội dung bài 1.44 trang 31 SBT Toán 12 - Kết nối tri thức

Bài 1.44 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Tính đạo hàm của hàm số hợp.
  • Dạng 2: Tìm đạo hàm cấp hai của hàm số.
  • Dạng 3: Sử dụng đạo hàm để tìm cực trị của hàm số.
  • Dạng 4: Khảo sát hàm số bằng đạo hàm (xác định khoảng đồng biến, nghịch biến, cực trị, điểm uốn).

Lời giải chi tiết bài 1.44 trang 31 SBT Toán 12 - Kết nối tri thức

Để giải bài 1.44 trang 31 SBT Toán 12 Kết nối tri thức, chúng ta cần thực hiện các bước sau:

  1. Bước 1: Xác định hàm số cần khảo sát.
  2. Bước 2: Tính đạo hàm cấp nhất của hàm số.
  3. Bước 3: Tìm các điểm tới hạn (điểm mà đạo hàm cấp nhất bằng 0 hoặc không xác định).
  4. Bước 4: Lập bảng biến thiên để xác định khoảng đồng biến, nghịch biến, cực trị của hàm số.
  5. Bước 5: Tính đạo hàm cấp hai của hàm số.
  6. Bước 6: Tìm các điểm uốn của hàm số.
  7. Bước 7: Vẽ đồ thị hàm số.

Ví dụ minh họa:

Giả sử hàm số cần khảo sát là y = x3 - 3x2 + 2.

Bước 1: Hàm số y = x3 - 3x2 + 2.

Bước 2: Đạo hàm cấp nhất: y' = 3x2 - 6x.

Bước 3: Giải phương trình y' = 0, ta được x = 0 hoặc x = 2.

Bước 4: Lập bảng biến thiên:

x-∞02+∞
y'+-+
y

Từ bảng biến thiên, ta thấy hàm số đồng biến trên các khoảng (-∞; 0) và (2; +∞), nghịch biến trên khoảng (0; 2). Hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2. Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là y = -2.

Lưu ý khi giải bài 1.44 trang 31 SBT Toán 12 - Kết nối tri thức

  • Nắm vững các công thức đạo hàm cơ bản.
  • Sử dụng quy tắc đạo hàm của hàm hợp một cách linh hoạt.
  • Lập bảng biến thiên một cách chính xác để xác định tính chất của hàm số.
  • Kiểm tra lại kết quả để đảm bảo tính chính xác.

Tổng kết

Bài 1.44 trang 31 SBT Toán 12 Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Hy vọng với lời giải chi tiết và các lưu ý trên, bạn sẽ tự tin giải quyết bài tập này một cách hiệu quả.

Nếu bạn có bất kỳ câu hỏi nào, đừng ngần ngại để lại bình luận bên dưới. Chúc bạn học tập tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN