Chào mừng bạn đến với lời giải chi tiết bài 4.7 trang 8 sách bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng và dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
Tusach.vn luôn đồng hành cùng bạn trên con đường chinh phục môn Toán.
Tìm: a) (int {left( {x + {{sin }^2}frac{x}{2}} right)} dx); b) (int {{{left( {2tan x + cot x} right)}^2}} {rm{ }}dx).
Đề bài
Tìm:
a) \(\int {\left( {x + {{\sin }^2}\frac{x}{2}} \right)} dx\);
b) \(\int {{{\left( {2\tan x + \cot x} \right)}^2}} {\rm{ }}dx\).
Phương pháp giải - Xem chi tiết
Ý a: Sử dụng công thức hạ bậc cho \({\sin ^2}\frac{x}{2}\), áp dụng các công thức tính nguyên hàm cơ bản cho hàm lượng giác và các hàm còn lại.
Ý b: Khai triển, rút gọn biểu thức dưới dấu căn bằng các công thức lượng giác đã học đưa hàm số về dạng có thể áp dụng trực tiếp công thức nguyên hàm cơ bản.
Gợi ý: \({\tan ^2}x = 1 + \frac{1}{{{{\cos }^2}x}};{\rm{ co}}{{\rm{t}}^2}x = 1 + \frac{1}{{{{\sin }^2}x}}\).
Lời giải chi tiết
a) Ta có \(\int {\left( {x + {{\sin }^2}\frac{x}{2}} \right)} dx = \int x dx + \int {\frac{{1 - \cos x}}{2}} dx = \frac{{{x^2}}}{2} + \frac{x}{2} - \frac{{\sin x}}{2} + C = \frac{{{x^2} + x - \sin x}}{2} + C\).
b) Ta có \({\left( {2\tan x + \cot x} \right)^2} = 4{\tan ^2}x + 4 \cdot \tan x \cdot \cot x + {\cot ^2}x\)\( = 4 \cdot \left( {1 + \frac{1}{{{{\cos }^2}x}}} \right) + 4 \cdot 1 + \left( {1 + \frac{1}{{{{\sin }^2}x}}} \right)\)
\( = 9 + \frac{4}{{{{\cos }^2}x}} + \frac{1}{{{{\sin }^2}x}}\).
Do đó\(\int {{{\left( {2\tan x + \cot x} \right)}^2}} dx = \int {\left( {9 + \frac{4}{{{{\cos }^2}x}} + \frac{1}{{{{\sin }^2}x}}} \right)} dx\)
\( = 9\int {dx} + 4\int {\frac{1}{{{{\cos }^2}x}}} dx + \int {\frac{1}{{{{\sin }^2}x}}} dx = 9x + 4\tan x - \cot x + C\).
Bài 4.7 trang 8 sách bài tập Toán 12 Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán liên quan đến tính đạo hàm, tìm cực trị, hoặc khảo sát hàm số. Việc nắm vững các công thức đạo hàm cơ bản và kỹ năng giải toán là rất quan trọng để hoàn thành tốt bài tập này.
Bài 4.7 thường bao gồm các dạng bài tập sau:
Để giúp bạn hiểu rõ hơn về cách giải bài 4.7 trang 8 SBT Toán 12 Kết nối tri thức, chúng tôi sẽ trình bày lời giải chi tiết cho từng phần của bài tập. (Ở đây sẽ là lời giải chi tiết của bài 4.7, ví dụ:)
Ví dụ: Giả sử bài 4.7 yêu cầu tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.
Lời giải:
f'(x) = 3x2 + 4x - 5
Để giải bài 4.7 trang 8 SBT Toán 12 Kết nối tri thức một cách hiệu quả, bạn cần lưu ý những điều sau:
Ngoài sách bài tập Toán 12 Kết nối tri thức, bạn có thể tham khảo thêm các tài liệu sau:
Hy vọng rằng với lời giải chi tiết và những lưu ý trên, bạn đã có thể tự tin giải bài 4.7 trang 8 SBT Toán 12 Kết nối tri thức. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!
Nếu bạn có bất kỳ câu hỏi nào, đừng ngần ngại liên hệ với Tusach.vn để được hỗ trợ.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập