Chào mừng bạn đến với lời giải chi tiết bài 2.11 trang 45 sách bài tập Toán 12 Kết nối tri thức. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng và dễ hiểu, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.
tusach.vn luôn đồng hành cùng bạn trên con đường chinh phục môn Toán.
Cho hình lăng trụ đứng (ABCD.A'B'C'D'). Biết rằng (AA' = 2) và tứ giác (ABCD) là hình thoi có (AB = 1) và (widehat {ABC} = {60^ circ }), hãy tính góc giữa các cặp vectơ sau và từ đó tính tích vô hướng của mỗi cặp vectơ đó: a) (overrightarrow {AB} ) và (overrightarrow {A'D'} ); b) (overrightarrow {AA'} ) và (overrightarrow {BD} ); c) (overrightarrow {AB} ) và (overrightarrow {A'C'} );
Đề bài
Cho hình lăng trụ đứng \(ABCD.A'B'C'D'\). Biết rằng \(AA' = 2\) và tứ giác \(ABCD\) là hình thoi có \(AB = 1\) và \(\widehat {ABC} = {60^ \circ }\), hãy tính góc giữa các cặp vectơ sau và từ đó tính tích vô hướng của mỗi cặp vectơ đó:
a) \(\overrightarrow {AB} \) và \(\overrightarrow {A'D'} \)
b) \(\overrightarrow {AA'} \) và \(\overrightarrow {BD} \)
c) \(\overrightarrow {AB} \) và \(\overrightarrow {A'C'} \)
Phương pháp giải - Xem chi tiết
Ý a: Đưa hai vectơ về cùng gốc, nghĩa là từ một trong hai vectơ xác định một vectơ bằng vectơ đó sao cho nó có cùng điểm đầu với vectơ còn lại (sử dụng các yếu tố, song song, bằng nhau xuất hiện trong hình lăng trụ kết hợp với khái niệm hai vectơ bằng nhau). Sau khi xác định được vectơ đó ta sẽ tìm được góc giữa hai vectơ cần tìm là một góc nào đó trong hình, dùng kiến thức hình học phẳng về hình thoi đã học để tìm góc. Từ góc tìm được ta tiếp tục tính tích vô hướng giữa haii vectơ bằng công thức đã học.
Ý b: Chứng minh hai vectơ vuông góc, từ đó xác định được góc và tích vô hướng.
Ý c: Tương tự ý a, ngoài ra còn sử dụng kiến thức hình học phẳng trong tam giác ở bước tìm số đo góc.
Lời giải chi tiết
a) Ta có \(\overrightarrow {A'D'} = \overrightarrow {AD} \) suy ra \(\left( {\overrightarrow {AB} ,\overrightarrow {A'D'} } \right) = \left( {\overrightarrow {AB} ,\overrightarrow {AD} } \right) = \widehat {BAC}\).
Mặt khác, xét hình thoi \(ABCD\) có \(\widehat {BAC} = \frac{{{{360}^ \circ } - 2 \cdot \widehat {ABC}}}{2} = \frac{{{{360}^ \circ } - 2 \cdot 60}}{2} = {120^ \circ }\).
Do đó \(\left( {\overrightarrow {AB} ,\overrightarrow {A'D'} } \right) = {120^ \circ }\). Khi đó ta có \(\overrightarrow {AB} \cdot \overrightarrow {A'D'} = AB \cdot AD \cdot \cos {120^ \circ } = 1 \cdot 1 \cdot \left( { - \frac{1}{2}} \right) = - \frac{1}{2}\).
b) Vì \(AA' \bot \left( {ABCD} \right)\) nên \(AA' \bot BD\), do đó \(\overrightarrow {AA'} \bot \overrightarrow {BD} \) hay \(\left( {\overrightarrow {AA'} ,\overrightarrow {BD} } \right) = {90^ \circ }\).
Khi đó ta có \(\overrightarrow {AA'} \cdot \overrightarrow {BD} = 0\).
c) Ta có \(\overrightarrow {A'C'} = \overrightarrow {AC} \) suy ra \(\left( {\overrightarrow {AB} ,\overrightarrow {A'C'} } \right) = \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \widehat {BAC}\).
Mặt khác, xét hình tam giác \(ABC\) có \(AB = BC = 1\) nên tam giác \(ABC\) cân tại B,
mà \(\widehat {ABC} = {60^ \circ }\) suy ra tam giác \(ABC\) là tam giác đều, vì vậy \(\widehat {BAC} = {60^ \circ }\).
Do đó \(\left( {\overrightarrow {AB} ,\overrightarrow {A'C'} } \right) = {60^ \circ }\). Khi đó ta có \(\overrightarrow {AB} \cdot \overrightarrow {A'C'} = AB \cdot A'C' \cdot \cos {60^ \circ } = 1 \cdot 1 \cdot \left( {\frac{1}{2}} \right) = \frac{1}{2}\).
Bài 2.11 trang 45 sách bài tập Toán 12 Kết nối tri thức thuộc chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Việc nắm vững các công thức đạo hàm cơ bản và kỹ năng tính đạo hàm là yếu tố then chốt để hoàn thành bài tập này một cách hiệu quả.
Bài 2.11 thường xoay quanh việc tính đạo hàm của các hàm số phức tạp, hoặc ứng dụng đạo hàm để tìm cực trị, khoảng đơn điệu của hàm số. Cụ thể, bài tập có thể yêu cầu:
Để giải bài 2.11 trang 45 SBT Toán 12 Kết nối tri thức, chúng ta cần thực hiện các bước sau:
Ví dụ minh họa:
Giả sử bài 2.11 yêu cầu tính đạo hàm của hàm số y = x3 - 3x2 + 2.
Lời giải:
y' = 3x2 - 6x
Để tìm điểm cực trị, ta giải phương trình y' = 0:
3x2 - 6x = 0
=> 3x(x - 2) = 0
=> x = 0 hoặc x = 2
Ta có y'' = 6x - 6
Tại x = 0, y'' = -6 < 0 => Hàm số đạt cực đại tại x = 0
Tại x = 2, y'' = 6 > 0 => Hàm số đạt cực tiểu tại x = 2
Bài 2.11 trang 45 SBT Toán 12 Kết nối tri thức là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Hy vọng với lời giải chi tiết và các mẹo giải bài tập trên, bạn sẽ tự tin hơn khi giải các bài tập tương tự. Chúc bạn học tốt!
Lưu ý: Đây chỉ là một ví dụ minh họa. Lời giải cụ thể cho bài 2.11 trang 45 SBT Toán 12 Kết nối tri thức sẽ phụ thuộc vào hàm số cụ thể được cho trong bài tập.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập